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SIMPLICIAL SURFACES CONTROLLED BY ONE TRIANGLE
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ABSTRACT: Embeddings of combinatorial closed simplicial surfaces in EUCLIDean 3-space
with all triangles congruent to one control triangle are investigated, where the control triangle
may vary. Definitions and general methods for construction and classification are outlined.
For one infinite family of combinatorial surfaces its dihedral symmetry is used to consruct all
embeddings and to characterize the possible congruence classes of the control triangle. The
investigation is motivated by problems in rigid origami.
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1. INTRODUCTION
The problem treated in this paper originated
from a question raised by the group around
Prof. M. Trautz [2], an architect at the RWTH,
asking to approximate surfaces by triangular
surfaces with very few congruence classes of
triangles. Discretizations of surfaces in dif-
ferential geometry usually lead to many con-
gruence types of triangles, cf. [1]. On the
other hand one has the theory of tesselations,
which however starts from a given geometric
surface.
This paper suggests an approach different
from both, namely constructing the surface
and the tesselation simultaneously by asking:
What do triangular surfaces look like, in case
all triangles are congruent? More specifically
we give some examples of the following situa-
tion: start with a closed simplicial surface in
EUCLIDean 3-space whose faces are all con-
gruent. How do the other simplicial surfaces
look like which are obtained from the given
surface by keeping the combinatorial structure
of the underlying simplicial surface fixed but
modifying the congruence class of the trian-
gles? What sort of modifications are possi-
ble in the first place? To make the problem
more manageable we not only keep the com-

binatorial structure of the simplicial complex
fixed, but prescribe what sort of EUCLIDean
motions take each triangle to each of its three
neighbouring triangles. Roughly speaking two
motions are possible, if one does not want
to be restricted to isosceles triangles: either
a rotation around the common edge or a ro-
tation by an angle of π around an axis per-
pendicular to the common edge through the
midpoint of this edge. The first kind we call
m-neighbouring, because intrinsically in the
surface we have a mirror, the second kind we
call r-neighbouring, because intrinsically in
the surface we have a rotation of π around
the midpoint of the common edge. The edges
then are called of type m resp. r. We insist that
these operations carry the type of edges over
to the neighbouring triangles so that all trian-
gles have the same neighbouring structure, i.e.
mmm or mmr etc. so that we have a control
triangle.
In this paper we outline a general method how
to construct all embeddings of a given com-
binatorial structure into EUCLIDean 3-space.
Definitions and this outline are contained in
Sections 2 and 3. We then treat interesting
examples, namely the octahedron and the dou-
ble hexagon with mmm-structure and mmr-



structure resp, in Section 4. These exam-
ples turn out to be the first instances of in-
finite families of examples, namely double 2n-
gons with mmm-structure, respectively mmr-
structure. They are also treated in this section.
The main result is a linearization result lift-
ing the combinatorial symmetry of the struc-
tured combinatorial simplicial surface to an
EUCLIDean symmetry of the embedding. Be-
cause of transitivity properties of the automor-
phism group actions in the example treated,
the system of quadratic equations, defining
the embedding, is reduced to a system of lin-
ear equations, thus allowing to enumerate all
embeddings in a uniform way. The remain-
ing question concerns the possible congruence
classes of the control triangles, which is solved
in Section 5.

2. DEFINITIONS
For the purposes of this paper the following
definition of simplicial surfaces will suffice.

Definition 2.1. A simplicial surface S is a
finite set V :=V (S) (of vertices), together with
a subset F :=F(S)⊆ Pot3(V ) of three-subsets
of V which is called the set of faces, triangles,
or two-simplices. We require V =

⋃
x∈F x and

call

E := E(S) := {{A,B} ⊂ x|x ∈ F,A 6= B}
the set of edges of S. The following conditions
must be satisfied:
1.) Any edge e ∈ E of S belongs to at most two
triangles.
2.) For any vertex A ∈V the set of all faces of
S containing A can be arranged in a sequence
( f1, . . . , fn) such that fi and fi+1 have an edge
in common.
Triangles with a common edge are called
neighboured. The simplicial surface is called
closed if any edge belongs to exactly two tri-
angles.

Usually our simplial surfaces are closed. If S
is closed simplicial surface: the map

d : V (S) 7→ N : P 7→ |{ f ∈ F(S)|P ∈ f}|

is called the degree map. Quite often S is
determined uniquely up to isomorphism by
the symbolic product

∏
i∈{1,...,|F(S)|}

i|{P∈V (S)|d(P)=i}|

So for instance of 34 denotes a tetrahedron, 46

an octahedron and 46 · 62 a double hexagon,
which can best be described by using permu-
tation groups as follows:

Definition 2.2. Let V be a finite set and G≤
SV be a subgroup of the symmetric group SV
on V . For any three-subset x ∈ Pot3(V ) of
V let Gx be the orbit of x under the induced
action of G on Pot3(V ). If for x1, . . . ,xk ∈
Pot3(V ) the union F of the Gxi satisfies con-
ditions 1.) and 2.) of 2.1, then the result-
ing simplicial surface complex is denoted by
S := S(G,x1, . . . ,xk).

Example 2.3. 1.) The permuta-
tion group C2 × Cn := 〈a,b〉 with
a := (1,2n+2)
b := (2,3, . . . ,n+1)(n+2,n+3, . . . ,2n+1)

yields the double 2n-gon
S(C2×Cn,{1,2,n+2},{1,2,2n+1})
of which the octahedron (n = 2) and double
hexagon (n = 3) are the first examples.
2.) The same simplicial surfaces can also be
obtained as S(C2×D2n,{1,2,2n+ 1}) with
C2×D2n = 〈a,b,c〉 where c :=
(3,n+1)(4,n) . . .(n+2,2n+1)(n+3,2n) . . .
inverts b by conjugation.

Definition 2.4. Let S be a simplicial sur-
face and λ : E(S) 7→ R>0 a map called edge-
valuation. A realization of (S,λ ) in EU-
CLIDean 3-space (R3×1, | |) is a map ρ :
V (S) 7→ R3×1 such that

|A−B|= λ ({A,B}) for all {A,B} ∈ E(S).

ρ induces a map from E(S) mapping {A,B} ∈
E(S) to the convex hull of {ρ(A),ρ(B)} and a
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map from F(S) mapping {A,B,C} ∈ F(S) to
the convex hull of {ρ(A),ρ(B),ρ(C)}. These
two maps are also denoted by ρ . The realiza-
tion is called vertex-faithful if ρ is injective.
It is called edge-faithful if it is vertex-faithful
and ρ(e)∩ρ( f ) = ρ(e∩ f ) for all e, f ∈ E(S).
It is called faithful or an embedding if it is
edge-faithful and ρ(x)∩ρ(y) = ρ(x∩ y) for
all x,y ∈ F(S).

In realizations where all triangles are congru-
ent, the edge-valuation λ takes at most three
values. More precisely we have the following
setup.

Definition 2.5. A (neighbouring) structure
Σ on a simplicial surface complex S is a sur-
jective map τ : E(S) 7→ {1,2,3} such that τ

takes three different values on the set of edges
of any face. The fibre of w ∈ {1,2,3} under
τ is called an m-class (for mirror) resp. an r-
class (for rotation), if and only if for any edge
{A,B} with τ({A,B}) = w and being edge to
two different triangles {A,B,C},{A,B,D} ∈
F(S) of S, then τ({A,C}) = τ({A,D}) resp.
τ({A,C}) = τ({B,D}). The structure Σ is
called an s1s2s3-structure for si ∈ {m,r}, if
τ−1({i}) is an si-class.

Example 2.6. 1.) The tetrahdron
S(S4,{1,2,3}) allows an rrr-structure.
2.) S(C2×D2n,{1,2,n+2}), cf. Example 2.3,
has an mmm-structure with τ(g{1,2}) = 1,
τ(g{1,n+2}) = 2 ,τ(g{2,n+2}) = 3 for all
g ∈C2×D2n.
3.) It further has an mmr-structure with
τ(g{1,2}) = g(1), τ(g{1,n + 2}) = g(2),
τ(g{2,n + 2}) = g(3) for all g ∈ C2 ×D2n,
where : C2×D2n → S3 mapping the three
generators a,b,c to (1,2),(),().

A realization of a structured simplicial sur-
face (S,Σ) is selfexplanatory, if one assigns a
length to each class of edges. However, more
can be done in the case where the abstract
simplicial surface is defined by a group as in
the examples above. Whereas it is a difficult

problem to find all realizations since one has
to solve a large system of quadratic equations
(one equation for each edge), there might be
a type of realization constructable from a sub-
group G of the automorphism group which we
will call G-equivariant. They have the advan-
tage that the number of quadratic equations is
reduced to the number |E(S)/G| of orbits of
G on E(S) by solving certain linear equations.
In the main examples of this paper all embed-
dings will be equivariant for the full automor-
phism group and therefore easily computable
because |E(S)/G|= 3 is as small as possible.

Lemma 2.7. Let (S,Σ) be a structured simpli-
cial surface, G≤ Aut(S,Σ) a subgroup of the
automorphism group of S respecting Σ.
1.) If ∆ : G→ Isom(R3×1) is a representation
of G then a ∆-linear realization of (S,Σ) is a
realization ρ : V (S)→ R3×1 satisfying

ρ(gP) = ∆(g)ρ(P) for all P ∈V (S), g ∈ G.

Note, these equations are linear equations for
the tuple (ρ(P))P∈V (S) ∈ R3×|V (S)|.
2.) The relevant representations ∆ can be cho-
sen to take values in the orthogonal group
O(R3×1) and is a non neccessarily irreducible
constituent of degree 3 of the linearized per-
mutation representation of G on V (S) (or in
terms of modules an epimorphic image of the
permutation RG-module RV ). Note that an
RG-homomorphism ρ from RV to R3×1 yields
the condition above for G-equivariance auto-
matically. The realization property is satisfied
if and only

|ρ(A)−ρ(B)|= di,

for all {A,B} ∈ τ
−1(i)⊆ E(S),

where d1,d2,d3 ∈ R>0 are the assigned λ -
values for the three classes, cf. Definition
2.4.

Proof. 2.) Since G is finite it fixes a point in
R3×1 so that G is conjugate to a linear group
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under a translation. Note also, two finite sub-
groups of the orthogonal group are conjugate
under the full linear group, if and only if they
are conjugate under the orthogonal group. The
rest is clear.

As a special property of combinatorial simpli-
cial surfaces relevant in this paper we define
G-linearizability.

Definition 2.8. A structured simplicial sur-
face (S,Σ) is called linearizable for a sub-
group G≤ Aut(S,Σ) if there is an orthogonal
representation ∆G→ Isom(R3×1) of G, such
that every embedding of (S,Σ) is ∆-linear.

3. PRELIMINARIES
As a general reference for elementary geomet-
ric facts adjusted to the use of computer alge-
bra systems [3] is quite helpful. The following
simple and well known lemma will be the key
to our uniqueness proofs.

Lemma 3.1. Let (P1,P2,P3) ∈ (R3×1)3 be
three non collinear points in EUCLIDean 3-
space and r1,r2,r3 ∈ R>0. Then there are at
most two points P ∈ R3×1 with |Pi−P| = ri
for i = 1,2,3. The point P is unique if and
only if it lies in the plane spanned by P1,P2,P3.
In the case of two solutions the orthogonal re-
flection fixing this plane interchanges the two
solutions.

The way we proceed is based on this lemma
and follows the tetrahedron philosophy:

Lemma 3.2. Let (P0,P1,P2,P3) ∈ (R3×1)4 be
four non coplanar points in EUCLIDean 3-
space (R3×1,Φ) and

Γ := (Φ(
−−→
P0Pi,

−−→
P0Pj))1≤i, j≤3

the GRAM-Matrix of the scalar product
Φ with respect to the vector space basis
(
−−→
P0P1, . . . ,

−−→
P0P3) of R3×1.

1.) Γ determines and is uniquely determined
by the six values of |−−→PiPj| for 0≤ i < j ≤ 3.

2.) Any P ∈ R3×1 is determined by its “dual”
coordinates Φ(

−−→
P0Pi,

−→
PPi) for i = 1,2,3.

3.) Let P ∈ R3×1 in the situation of Lemma
3.1. Let X := |−→P0P|2. Then X satisfies the
quadratic equation

det
(

Γ ytr

y X

)
= 0 with yi :=

1
2
(X +r2

i −Γii)

for i = 1,2,3.

The following remark, probably dating back
to ARCHIMEDES, cf. [3], is an alternative
to the usual characterization li + l j > lk for
all {i, j,k} = {1,2,3} of the lengths triple
(l1, l2, l3) in the EUCLIDean space.

Remark 3.3. Let (Lr,Lb,Lg)∈R3
>0. There ex-

ist a nondegenerate triangle in the EUCLIDean
plane with squared side lengths Li, if and only
if

(Lr +Lg +Lb)
2−2(L2

r +L2
g +L2

b)> 0.

(In that case the left side of the inequality is
sixteen times the square of the area of the tri-
angle.)

4. EMBEDDINGS FOR THE DOUBLE
2N-GONS

In the following tables we summarize the
central data for constructing all G-equivariant
embeddings into EUCLIDean 3-space where
G is the combinatorial automorphism group
of the structured simplicial surface 2n-gons
with mmm and mmr structure for n = 2 and
n = 3. We then proceed to prove that there are
no further embeddings. Finally we treat the
case of general n.
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Octahedron 46 with mmm-structure :

6

4

6

2

6

3

6

5

1

mmm-structure for 46

Group of automorphisms:
C2×D4 := 〈a,b,c〉 ∼=C3

2 with
a := (1,6), b := (2,3)(4,5) , c := (4,5).
Representation:
a 7→ diag(−1,1,1),
b 7→ diag(1,−1,1),
c 7→ diag(1,1,−1).
orthogonal w.r.t. GRAM matrix I3.
Affine centralizer as linear matrix group:
{diag(α,β ,γ)|α,β ,γ ∈ R∗}.
Coordinates of control triangle:

1 7→

 0
0
z

 ,2 7→

 0
y
0

 ,5 7→

 x
0
0

 with

x,y,z ∈ R∗.
Edge lengths:
l2
r = y2 + z2, l2

b = x2 + z2, l2
g = x2 + y2.

Sample picture: (Note all embeddings are
affinely equivalent.)

mmm-structure for 46 with triangle of edge
lengths 1, 131

100 ,
102
100

Octahedron 46 with mmr-structure :

6

4

6

2

6

3

6

5

1

mmr-structure for 46

Group of automorphisms:
D8 := 〈a,b,c〉 with
a := (1,6)(2,5)(4,3), b := (2,3)(4,5) , c :=
(4,5).
Representation:
a 7→ diag(1,−1,−1),
b 7→ diag(−1,−1,1),

c 7→ diag(
(

0 1
1 0

)
,1)

orthogonal w.r.t. GRAM matrix I3.
Affine centralizer as linear matrix group:
{diag(α,α,β )|α,β ∈ R∗}.
Coordinates of control triangle:

1 7→

 0
0
z

 ,2 7→

 x
x
y

 ,5 7→

 x
−x
−y


with x,y,z ∈ R,x,z 6= 0
Edge lengths:
l2
r = 2x2 + (z− y)2, l2

b = 2x2 + (z+ y)2, l2
g =

4x2 +4y2.
Sample pictures: ( Note all embeddings with
the same value ζ := y

z are affinely equivalent).

mmr-structure for 46 convex with triangle of
edge lengths 1, 184

100 ,
192
100
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mmr-structure for 46 non convex with triangle
of edge lengths 1, 67

100 ,
139
100

Double hexagon 46 · 62 with mmm-
structure:

6

8 3

8

5 8

2

87

8

48

1

mmm-structure for 46 ·62

Group of automorphisms:
C2×D6 := 〈a,b,c〉 with
a := (1,8), b := (2,3,4)(5,6,7) ,
c := (3,4)(5,7)
Representation:
a 7→ diag(1,1,−1),

b 7→ diag(
(

0 −1
1 −1

)
,1),

c 7→ diag(
(

1 −1
0 −1

)
,1).

orthogonal w.r.t. GRAM matrix

diag(
(

2 −1
−1 2

)
,1).

Affine centralizer as linear matrix group:
{diag(α,α,β )|α,β ∈ R∗}.
Coordinates of control triangle:

1 7→

 0
0
z

 ,2 7→

 x
0
0

 ,7 7→

 0
−y
0


with x,y,z ∈ R∗,xy > 0

Edge lengths:
l2
r = 2x2 + z2, l2

b = 2y2 + z2, l2
g =

2(x2− xy+ y2).
Sample picture: ( Note all embeddings with
the same value ζ := x

y are affinely equivalent.)

mmm-structure for 46 ·62 convex with triangle
of edge lengths 1,1, 15

16

mmm-structure for 46 ·62 non convex with tri-
angle of edge lengths 1,7, 20

3

Double hexagon 46 ·62 with mmr-structure:

6

8 3

8

5 8

2

87

8

48

1

mmr-structure for 46 ·62

Group of automorphisms:
D12 := 〈a,b,c〉 ∼=C2×D6 with
a := (1,8)(2,6)(3,7)(4,5),
b := (2,3,4)(5,6,7) ,
c := (3,4)(5,7)
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Representation:
a 7→ diag(−1,−1,−1),

b 7→ diag(
(

0 −1
1 −1

)
,1),

c 7→ diag(
(

1 −1
0 −1

)
,1).

orthogonal w.r.t. GRAM matrix

diag(
(

2 −1
−1 2

)
,1).

Affine centralizer as linear matrix group:
{diag(α,α,β )|α,β ∈ R∗}.
Coordinates of control triangle:

1 7→

 0
0
z

 ,2 7→

 x
0
y

 ,7 7→

 0
−x
−y


with x,y,z ∈ R,x,z 6= 0
Edge lengths:
l2
r = 2x2 + (z− y)2, l2

b = 2x2 + (z+ y)2, l2
g =

2x2 +4y2.
Sample picture: ( Note all embeddings with
the same value ζ := y

z are affinely equivalent.

mmr-structure for 46 ·62 convex with triangle
of edge lengths 1,1,

√
2

mmr-structure for 46 ·62 non convex with tri-
angle of edge lengths 1, 17

28 ,
195
56

Comments: In case (46 · 62,(m,m,m)) the
control triangle with xy < 0 lead to realiza-
tions which are not embeddings. in case

(46 ·62,(m,m,r)) a different representation is
possible in principle, however it only leads to
realizations that are not embeddings.

The embedding treated in the tables above
are equivariant embeddings for the combina-
torial automorphism group. We now prove
that there are no other embeddings in the four
cases treated.

Theorem 4.1. The simplicial surfaces S :=
S(C2 × D2n,{1,2,2n + 1}) with mmm and
mmr structure, cf. 2.3 and 2.6, are G-
linearizable, where G is the full automorphism
group of the structured simplicial surface.

Proof. Let ρ be an embedding of the mmm
structured simplicial surface S. Clearly C2×
D2n is the full automorphism group of this
structured surface. ρ restricts to an em-
bedding of the tetrahedron 1,2,2n+1,2n+2
with edge lengths lr, lb, lg,d for some d > 0
where d = |ρ(1)−ρ(2n+2)| is the distance
between the two points 1 and 2n+ 2 which
are not connected by an edge of the surface.
The tetrahedron {1,2,2n+ 1,2n+ 2} shares
a common tetrahedron face {1,2,2n + 2}
(which is not a face of the surface) with the
tetrahedron {1,2,n+ 2,2n+ 2}. By Lemma
3.1 ρ(n + 2) can take two values, one of
which is ρ(2n+ 1). As ρ is an embedding
ρ(n+2) 6= ρ(2n+1) and hence uniquely de-
termined by applying the orthogonal reflec-
tion σ2 fixing ρ(1),ρ(2),ρ(2n+ 2). Repeat-
ing the same argument the orthogonal reflec-
tion σn+2 yields σn+2(ρ(2)) = ρ(3). Sim-
ilary σ3(ρ(n + 2)) = ρ(n + 3) etc.. Note
σ3 = σn+2σ2σn+2 etc. and σn+2σ2 is a ro-
tation around the edge ρ(1)ρ(2n+2). There-
fore we get (σn+2σ2)

n = Id, more precisely
σn+2σ2 is a rotation by an angle 2π

n since ρ is
an embedding and not just a realization. Let σ

be the orthogonal reflection fixing all ρ(i) for
1 < i < 2n+2, which is well defined because
|ρ(1)−ρ(i)|= |ρ(2n+2)−ρ(i)| for 1 < i <
2n+2. Then a 7→ σ ,b 7→ σn+2σ2,c 7→ σ2 de-
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fines an orthogonal representation of C2×D2n
for which ρ is ∆-linearizable.
In the mmr case the full automorphism group
is a dihedral group of order 4n generated
by f := (1,2n + 2)(2,n + 2,3,n + 3, . . . ,n +
1,2n+ 1) together with b,c as in 2.3. Note,
f 2 = b. The construction and properties of σi
for 1 < i < 2n+2 are the same as in the mmm
case so that we obtain a representation ∆ of
U := 〈b,c〉 via b 7→ σn+2σ2,c 7→ σ2 as above.
To construct the image of f under the desired
representation note that U has two orbits on
the set {2,3, . . . ,2n+1} according to the cor-
responding cycles of b. One easily checks
that each of the two orbits lies in a plane or-
thogonal to ρ(1)ρ(2n+2) equidistant to its
midpoint and forms a regular n-gon. Their
orthogonal projections in the central vertical
M of ρ(1)ρ(2n+2) yields a regular 2n-gon
as convex hull. Hence one can map f onto
the rotation by the angle of π/n multiplied by
the orthogonal reflection fixing M and inter-
changing ρ(1) and ρ(2n+ 2). The rest is as
above.

Though we have used a slightly different nota-
tion in the tables than in the proof, the unique-
ness of the orthogonal representations up to
equivalence follows from the proof without
further calculations. Note also that in all cases
considered the automorphism group is transi-
tive on each of the three types of edges. There-
fore we get the following corollary.

Corollary 4.2. For the simplicial surfaces
S := S(C2 × D2n,{1,2,2n + 1}) with mmm
and mmr structure, with C2×D2n = 〈a,b,c〉
as in 2.3, all embeddings in EUCLIDean 3-
space can be calculated from the full auto-
morphism group by solving linear equations
only.

5. CONTROLLING THE CONTROL
TRIANGLES

The question left over in the last section is to
decide for a given triangle wether and how it

occurs as a control triangle for a structured
simplicial surface (S,(s1,s2,s3)). In other
words, given the lengths (l1, l2, l3) of some tri-
angle, find all embeddings of S with the edges
of type si of length li.

Proposition 5.1. Let (S,(mr,mb,mg)) denote
the simplicial surface 46 with mmm-structure.
The following four statements for a triangle T
are equivalent.
1.) The three side lengths li of T satisfy

l2
i + l2

j > l2
k for {i, j,k}= {r,b,g}.

2.) All three angles of T are smaller than
π/2.
3.) There exists an embedding of
(S,(mr,mb,mg)) into EUCLIDean 3-space
with control triangle T .
4.) Up to EUCLIDean motion there exists a
unique embedding of (S,(mr,mb,mg)) into
EUCLIDean 3-space with control triangle T .

Proof. The equivalence of 1.) and 2.) is
elementary. The implication 3.) ⇒ 1.) is
an immediate consequence of the table for
(46,(mmm)) in Section 4. It remains to show
1.)⇒ 4.). But this follows by a a simple linear
elimination of x2,y2,z2 from the equations for
the l2

i in the table for (46,(mmm)).

For (46,(mr,mb,rg)) with mmr-structure the
situation is slightly more complicated.

Proposition 5.2. Let (S,(mr,mb,rg)) denote
the simplicial surface 46 with mmr-structure.
The following four statements for a triangle T
are equivalent.
1.) The three side lengths li of T satisfy

lr 6= lb or l2
r + l2

b > l2
g in case lr = lb.

2.) T is an arbitrary triangle with the
restriction that in the iscosceles case lr = lb
the apex angle is smaller than π/2.
3.) There exists an embedding of
(S,(mr,mb,rg)) into EUCLIDean three
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space with control triangle T .
4.) Up to EUCLIDean motion there exists a
unique embedding of (S,(mr,mb,rg)) into
EUCLIDean three space with control triangle
T .

Proof. The equivalence of 1.) and 2.) is
elementary. The implication 3.) ⇒ 1.) is
an immediate consequence of the table for
(46,(mmr)) in Section 4. It remains to show
1.) ⇒ 4.). Assume first that lr 6=b. Then
from the equations for the l2

i in the table for
(46,(mmr)) we obtain equations for x,y,z and
we have to show that one has a unique solu-
tion with x > 0,z > 0. Substituting y = (l2

b −
l2
r )/(4z) into right hand side of 1/2(l2

g− l2
r ) =

3y2−z2+2yz yields the following biquadratic
equations for z.

z4 +
1
2
(l2

g− l2
b− l2

r )z
2− 1

16
(l2

b− l2
r )

2 = 0,

of which the discriminant with respect to z2 is
1
4
((l2

g− l2
r − l2

b)
2 +(l2

r − l2
b)

2).

This shows that there is excactly one positive
solution for z. Going backwards one finds
y = (l2

b− l2
r )/(4z) and finally x. The final case

lr = lb is left to the reader.

Theorem 5.3. For the structured simplicial
surface (42n · (2n)2,mmm), i.e. the dou-
ble 2n-gon as defined in 2.3 with mmm-
structure, a triangle T with side squared
lengths (Lr,Lb,Lg) ∈ R3

>0, i. e.

(Lr +Lg +Lb)
2−2(L2

r +L2
g +L2

b)> 0,

is admissible for an embedding, if and only if
the following conditions hold:
a.) w := Lb−Lr

Lg
satisfies w2 < 1

sin(π/n)2 .
b.) For w 6= 0 there is a solution of

ζ 2−1
ζ 2−2cos(π/n)ζ+1−w = 0 with ζ > 0 satisfying

Lrζ
2−Lb

ζ 2−1
> 0,

Lb−Lr

ζ 2−1
> 0,

and in case w = 0, i.e. Lr = Lb, one has
Lg < 4sin2( π

2n)Lr.

Proof. Assume there is an embedding of the
structured simplicial surface for a triangle with
squared sidelengths (Lr,Lg,Lb). According to
Theorem 4.1 the vertices of the triangle can be
chosen to be

1 7→ (0,0,z),
2 7→ (x,0,0),

2n+1 7→ xζ · (cos(
π

n
),sin(

π

n
),0)

for x,z,ζ > 0 in standard CARTESean coordi-
nates so that the squared lengths can be written
as

Lr = x2 + z2,

Lb = (xζ )2 + z2,

Lg = x2 +(xζ )2−2x2
ζ cos(

π

n
).

Hence ζ 2Lr − Lb = (1− ζ 2)z2 yielding the
first condition in b.). Similarly Lb − Lr =
(1−ζ 2)x2 yields the second condition in b.).
Also by substituting the squared lengths in the
defintion of w leads to

w =
ζ 2−1

ζ 2−2cos(π/n)ζ +1
.

The right hand side is easily seen to be
bounded by | 1

sin(π/n) |. (Note, in principle there
there might be two values ζ for a given w.)
The case w = 0 corresponds to the isosceles
triangle with apex in vertex 1 which obviously
satisfy the above condition.
Conversely if all the conditions are satisfied,
the above analysis leads to unique expressions
for x,y,z > 0 which leads to a triangle with the
squared side lengths Lr,Lb,Lg and the claim
follows by Theorem 4.1.

Theorem 5.4. For the structured simplicial
surface (42n · (2n)2,mmr), i.e. the dou-
ble 2n-gon as defined in 2.3 with mmr-
structure, a triangle T with side squared
lengths (Lr,Lb,Lg) ∈ R3

>0, i. e.

(Lr +Lg +Lb)
2−2(L2

r +L2
g +L2

b)> 0,
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is admissible for an embedding, if and only if
the following conditions hold:

Lr 6=Lb or Lg < 4sin2(
π

2n
)Lr in case Lr =Lb.

Proof. Assume there is an embedding of the
structured simplicial surface for a triangle with
squared sidelengths (Lr,Lg,Lb). According to
Theorem 4.1 the vertices of the triangle can be
chosen to be

1 7→ (0,0,z),
2 7→ (x,0,ζ z),

2n+1 7→ (xcos(
π

n
),xsin(

π

n
),−ζ z)

for x,z,ζ > 0 in standard CARTESean coordi-
nates so that the squared lengths can be written
as

Lr = x2 + z2(1−ζ )2,

Lb = x2 + z2(1+ζ )2,

Lg = x2−2x2 cos(
π

n
)+4ζ

2z2.

Substituting z2 = (Lb−Lr)/(4ζ ) into the right
hand side of Lg− (2− 2cos(π/n))Lr yields
the following quadratic equation for ζ :

ζ
2 +

2((Lb +Lr)(1− cos(π

n ))−Lg))

(cos(π

n )+1)(Lb−Lr)
ζ+

(cos(π

n )−1)
(cos(π

n )+1)
= 0

which has excactly one positive solution. The
rest including the isosceles case completely
analogous to the previous proof.

Of the various questions which can now be
answered such as convexity, rigidity and so
on, we finish this paper with the following
remark.

Remark 5.5. For the simplicial surface S :=
(42n · (2n)2), i.e. the double 2n-gon as de-
fined in 2.3, with either structures Σ, an mmm-
structure or an mmr-structure, the following

holds: The function T 7→ V 2
S,T,Σ/A3

S,T,Σ with
T ranging over all possible similarity classes
of control triangles for embeddings takes its
unique maximum at the class of isosceles tri-
angles with apex at the vertex of degree 2n
and apex angle 2arcsin(

√
1

1+cos(π/n)). Here

VS,T,Σ denotes the enclosed volume and A3
S,T,Σ

the area of the embedding of the structured
surface (S,Σ).

6. CONCLUSIONS
Finding the embeddings of a structured simpli-
cial surface into EUCLIDean 3-space leads to a
large system of quadratic equations. This sys-
tem is simplified if one only looks for embed-
dings with symmetry. For the case of double
2n-gons it turns out that all combinatorial sym-
metries carry over to EUCLIDean symmetries
of the embeddings. In other words all embe-
dings are highly symmetric and can therefore
already be found by solving linear equations
only. The admissable control triangles are
characterized.
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