
16TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS ©2014 ISGG
4–8 AUGUST, 2014, INNSBRUCK, AUSTRIA

Paper #173

DYNAMIC GEOMETRY AND WEBSITE SETUP BY
AUTOMATIC OBJECT RECOGNITION OF

FREE-HAND DRAWINGS AND SCANS

Karl-Heinz BRAKHAGE
RWTH Aachen University, Germany

ABSTRACT: Computer software, websites, web applications and the usability on tablets and smart-
phones have the potential to make significant improvements in how geometry is learnt and taught. As
with any approach to teaching, the educational use of information and communication technology as
well as computer software needs to be well thought through and carefully planned. Sometimes it is
useful to have tools that automatically recognize given curves as lines, circles or conics and splines.
In this paper we will concentrate on automatic object recognition from free-hand drawings and / or
scans and the conversion into scalable vector graphics. These can be used for animations or exported
as vector graphics in various formats. We will give an overview of the analytical background and
implementation issues. Furthermore we will demonstrate its use on a couple of selected examples from
various areas.

Keywords: Teaching, Descriptive Geometry, Dynamic Geometry, Splines, Approximation, Fairing,
Numerical Analysis

1. INTRODUCTION

Nowadays the abilities of computers and software
have a significant influence on teaching and learn-
ing geometry. Computer software, particular that
known as Dynamic Geometry Software, websites,
web applications and the usability on tablets and
smartphones have the potential to make signif-
icant improvements in how geometry is learnt
and taught. Our view is that teachers should
now have at their disposal an appropriate vari-
ety of equipment from which to select. As with
any approach to teaching, the educational use
of information and communication technology
as well as computer software needs to be well
thought through and carefully planned. In this
paper we will concentrate on some special top-
ics of WinCAG (Windows version of Computer
Aided Geometry) which has been especially de-
signed for teaching and learning geometry (see
[2]). With this software package both simple
constructions and complicated dependencies can

easily be animated. Furthermore the drawings
can be exported in well suited formats for further
use in publications or on web pages. Here we
will particular focus on some special capabilities
for automatic object recognition from free-hand
drawings and / or scans. Sometimes it is useful
to have tools that automatically recognize given
curves as lines, circles or conics and splines. We
have implemented that in WinCAG in two ways.
For external data we can import pixel oriented
bitmaps or polylines in form of coordinates. Fur-
thermore the system has a module that generates
traverses by free-hand mouse-drawing.
To clearly demonstrate the goal of our efforts

we give an illustrating example. Figure 1 shows
a screenshot of such a scenario. We have three
different traverses. These were recognized by the
system as a line, a circle and an ellipse. Figure 2
shows the reconstruction of the corresponding
scanned plot of figure 1. A zoom clearly shows
a pixelated look in case of figure 1 and the exact

Figure 1: Screenshot of an object recognition:
line, circle and ellipse (with raster).

curves in figure 2. Additionally hyperbolas and

Figure 2: Reconstruction of figure 1 (without
raster).

parabolas will be recognized. For this purpose
the user has to give tolerances for each object.
Since for instance an ellipse normally fits better
than a circle, the tolerance for circles must be
chosen larger than that for ellipses. The system
stores the data traverses and the user can force
it to compute a given kind of curve. The fall
back option is a smooth B-spline. The curves
corresponding to the input in form of polylines
or point clouds are computed by least squares
solutions. For conics the fit by a linear implicit
form does not yield the optimal (non-linear) least

squares solution given by the parameterized form.
Thus for an initial guess from a linearized scaled
problem we determine the parameters for the data
points and make some Gauss-Newton steps to im-
prove our result. If we are close to a parabola the
system computes a least squares solution for this
case, too. Then the user can optionally decide to
take the parabola. If the distances to all of the
above objects are too large the system will com-
pute a B-spline approximation. Figure 3 shows
an example for that situation. We have plotted
the control polygon for the B-spline (of order 4),
too. Additionally we have marked the data points
because the data polygon nearly coincides with
the spline.

Figure 3: PDF export of an object recognition:
B-spline.

The geometric objects of the above processes
can either be used within the software package
WinCAG for animations or exported as vector
graphics in various formats, for instance Encap-
sulated Postscript (EPS), PDF and Scalable Vec-
tor Graphics (SVG). EPS and PDF files are for
use in printed publications. SVGs can be used
for websites. The major advantage of all three
formats is the very small size of the files and the
possibility to zoom without grid pattern effects
(see figure igure 1). This is achieved via highly
accurate numerical approximation of the given
geometrical entities using objects supported in
the target format.

2

We have seen above that raster images like
screen shots cannot be scaled up in size without
the loose of sharpness – they will look pixelated.
Producing files (in the background) with a suf-
ficient resolution for high quality prints results
usually in very large files. Thus formats based
on raster images are useless for websites – at
least if we need higher resolutions. On the other
hand vector graphics formats can present lines,
curves, fonts etc. at essentially arbitrary precision
in different colors and sizes in small files. Thus
the conversion into these formats yields a signifi-
cant quality improvement for the representation
of curves and other plots.

3.4 page 13

h

s

H

M'

O

O'

s

M

O'

O

H

e

e'

Y'
_

S't

St

Y
_

X'
_

X
_

Figure 4: Advanced stage of an example for a
perspective view with all layers on.

Figure 4 shows a more complex example. Here
we have turned all layers on. Details will become
clear by zooming into different areas of the plot.

The rest of this paper is organized as follows.
First we give some basic notations and properties
of Bézier and B-spline curves. Next we give some
details on the used approximation strategies and
algorithms for splines. A short summary and
an evaluation regarding computation time and
accuracy of the algorithms usually applied for
these purposes will be given. Then we show how
we force the system to favour special entities such
as ellipses, hyperbolas or parabolas. Finally a we
make some notes on the module that converts
bitmaps to vector graphics.

2. SOME BASICS ON BÉZIERS AND B-
SPLINES

Bézier curves of order n are given by n+1 control
or Bézier points pi ∈ℝm, i = 0 . . .n (here m = 2),
that build the so-called control polygon, are given
for t ∈ [0,1] by

x(t) =
n

∑
i=0

Bn
i (t)pi (1)

with the Bernsteinpolynomials

Bn
i (t) =

(
n
i

)
t i(1− t)n−i. (2)

It is easy to verify

x(0) = p0, x′(0) = n(p1−p0),
x(1) = pn, x′(1) = n(pn−pn−1)

(3)

Geometric continuity is an important property
of the shape of curves and surfaces. For dynamic
applications, e.g. path of a cutter tool for NC
milling, we need curvature continuity. This is
due to the physical effect of mass inertia. For
our purposes here it its enough to claim tangent
continuity. Thus we only define GC1-continuity
in terms of the parametrization. Two curves
x(t), t ∈ [t0, t1] and y(s), s ∈ [s0,s1] are said to
be GC1-continous at the junction x(t1) = y(s0)
(that is called GC0-continuity) if there exists a γ

with
x′(t1) = γ y′(s0) (4)

From (3) it is easy to see that the composition
of two Bézier curves x1(t) and x2(t) is GC1-
continous, iff p1

n−1, p1
n = p2

0 and p2
1 lie in a

straight line.
One main advantage for interpolation and approx-
imation with curves like (1) is the linearity in the
control points pi. B-spline curves have these
property, too. They are given by

x(t) =
N

∑
i=0

Ni,p,T (t)pi (5)

where Ni,p,T (t) is the i-th normalized B-spline
function of order p (degree p−1) corresponding

3

to the generally non-uniform knot vector T =
(t0, t1, . . . , tN+p). We usually assume that T is
clamped, i.e., t0 = . . . = tp−1 and tN+1 = . . . =
tN+p. For the sake of simplicity we write Ni,p
instead of Ni,p,T since it becomes clear from the
name of the function argument what the knot
vector is. Surfaces are represented by B-spline
tensor products of the form

x(u,v) =
N

∑
i=0

M

∑
j=0

Ni,p(u)N j,q(v)pi j (6)

and the Bézier representation is

x(u,v) =
N

∑
i=0

M

∑
j=0

Bn
i (u)Bm

j (v)pi j. (7)

These representation are linear in the control
points, too. The same applies for stationary sub-
division curves and surfaces. The algorithms
presented below can be used for all these curve
and surface classes.

Further information on Bézier- and B-splines
can be found in standard literature on CAGD
(Computer Aided Geometric Design), e.g. [5].
Furthermore several web page with applets re-
garding splines can be found. Here are some
examples

• Wikipedia-Bezier: http://de.
wikipedia.org/wiki/B%C3%
A9zierkurve

• Prautsch-Applets: http://i33www.
ibds.uni-karlsruhe.de/
applets/mocca/html/noplugin/
inhalt.html

• Farin-Applets: http://www.vis.
uni-stuttgart.de/˜kraus/
LiveGraphics3D/cagd/index.
html

3. APPROXIMATION OF CURVES AND
SURFACES

Postscript, PDF and SVG have the entities
quadratic an cubic Bézier curves but no higher

degrees. Therefore we will restrict ourselves to
polynomial degree two and three in the following
if it reduces technical investments for the descrip-
tion.

B-splines can be split into Béziers by succes-
sive knot insertion. If we use cubic B-splines
we get GC2-continuity and in general approxima-
tions with smaller errors than those from GC1-
continuous Bézier approximations. But the linear
systems of equations we have to solve are larger.

To be more precise we have to introduce some
technical notations. For an optimal approxima-
tion of a given curve y(v), v ∈ [vmin,vmax]∈ℝ by
a Bézier-spline we have to determine the control
points pi (see (1)) in such a way that

max
v∈[vmin,vmax]

min
t∈[0,1]

∥y(v)−x(t)∥2 (8)

is minimized. For B-splines the only difference
is that in (8) now t ∈ [tp−1, tN+1]. Since these
problems are to hard to solve we switch to dis-
crete interpolation or approximation problems.
For Béziers the whole interval [vmin,vmax] is nor-
mally a-priori splitted into a couple of subinter-
vals. For simplicity we use the interval[vl, vr] for
these subintervals and define

v(s) := vl + s(vr− vl). (9)

Since we want to construct over all GC1-
continuous curves we further assume that for all
parts y(vl), y′(vl), y(vr) and y′(vr) are given or
computable. Then for quadratic Béziers from (3)
we get

p0 = y(vl) , p1 = p0 +α y′(vl) ,
p2 = y(vr) , p1 = p2 +β y′(vr).

(10)

α and β are already determined by the two equa-
tions for p1. For cubic Béziers (3) implies the
conditions

p0 = y(vl) , p1 = p0 +α y′(vl) ,
p3 = y(vr) , p2 = p3 +β y′(vr).

(11)

Thus we only have the two free (scalar) parame-
ters α and β . With this notations we can formu-
late two strategies for curve approximation with
cubic Béziers.

4

http://de.wikipedia.org/wiki/B%C3%A9zierkurve
http://de.wikipedia.org/wiki/B%C3%A9zierkurve
http://de.wikipedia.org/wiki/B%C3%A9zierkurve
http://i33www.ibds.uni-karlsruhe.de/applets/mocca/html/noplugin/inhalt.html
http://i33www.ibds.uni-karlsruhe.de/applets/mocca/html/noplugin/inhalt.html
http://i33www.ibds.uni-karlsruhe.de/applets/mocca/html/noplugin/inhalt.html
http://i33www.ibds.uni-karlsruhe.de/applets/mocca/html/noplugin/inhalt.html
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/cagd/index.html
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/cagd/index.html
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/cagd/index.html
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/cagd/index.html

1) Determine α and β by the condition
y(v(0.5)) = x(0.5) – interpolation in be-
tween.

2) Determine α and β by the condition
∑

n
i=1(y(v(si))− x(si))

2 → min with 0 <
s1 < s2 < .. . < sn < 1 – (discrete) mean
square approximation. Here we only use
n = 3 with s1 = 1/4, s2 = 1/2 and s3 = 3/4.

We further use the error estimators

δ = max
i∈{1,3}

∥∥∥∥y
(

v
(

i
4

))
−x
(

i
4

)∥∥∥∥
2

(12)

in 1) and

δ = max
i∈{1,3,5,7}

∥∥∥∥y
(

v
(

i
8

))
−x
(

i
8

)∥∥∥∥
2

(13)

in 2). If the error is two large, we (recursively)
subdivide [vl, vr] into two equal parts.

We use yh := y(v(1/2)), t0 := y′(vl) and t1 :=
y′(vr). Strategy 1) results in an equation

Ax = b (14)

with
A =

(3
8 t0

3
8 t1

)
, (15)

b =
(

yh− 1
2 p0− 1

2 p3
)

(16)

and

x =
(

α

β

)
. (17)

With zi := y(v(si)) strategy 2) leads to an over-
determined linear system

∥Ax−b∥2→min (18)

with

A =

⎛⎜⎜⎜⎝
27
64 t0

9
64 t1

3
8 t0

3
8 t1

9
64 t0

27
64 t1

⎞⎟⎟⎟⎠ , (19)

b =

⎛⎜⎜⎜⎝
z1− 27

32 p0− 5
32 p3

z2− 1
2 p0− 1

2 p3

z3− 5
32 p0− 27

32 p3

⎞⎟⎟⎟⎠ (20)

and

x =
(

α

β

)
. (21)

Figure 5 shows an example for the approxima-

Approximating a quarter of an elliptic arc with one quadratic Bezier-Curve

Error estimation: Distance between curve-point at '1/2' and Bezier-point at '1/2'

Recursion: Approximating a quarter of an elliptic arc with two quadratic Bezier-Curves

Error estimation in 'left part'

Error estimation in 'right part'

Figure 5: Recursive approximation with
quadratic Bézier curves

tion of one quarter of an ellipse with quadratic
Béziers. Only one level of recursion is shown.
The error estimator – at least for higher recur-
sion level – is rather pessimistic. This is due to
the fact that the error vectors become more and
more tangential to the curves with higher recur-
sion level. For a measurement of the real curve
to curve distance the error vectors should be or-
thogonal to them. We will fix this lack later on
with parameter corrections. This simple example
already shows the power of spline approximation.
For quadratic splines we expect the convergence
rate O(h3). This can only be achieved if the un-
derlying curve is in C3[vmin,vmax]. Thus for every
recursion the error will be (asymptotically) re-
duced by a factor of 8. In figure 6 we have used
a cubic Bézier with strategy 2) for a Lissajous
figure with dimension 20× 14. We made two
approximation. One with a desired absolute error
of 10−1 and as reference one with an absolute
error of 10−6. Additionally the control polygon
is shown. Very few control points lead to a good
approximation of the Lissajous curve. For cubic
splines we expect the convergence rate O(h4).
Here the curve for approximation has to be in

5

CLissajous(CVektor2d(13.5,9.5), 10,7, 3,2, 1.5)
ToPS(0, Pi2, 1e-1, 2)
ToPS(0, Pi2, 1e-6, 2)

Figure 6: Approximation with cubic Bézier
curves

C4[vmin,vmax].
Figure 7 shows the approximation and estima-

tion strategy. Again we have use a quarter of an
ellipse. Only the entrance level is shown. If we

approximation at 1/4

approximation at 3/4

approximation at 1/2

error estimation at 1/8

error estimation at 3/8

error estimation at 5/8

error estimation at 7/8

Figure 7: Approximation with cubic Bézier
curves – strategy and error estimation

use the error estimation as shown in figure 5 and
figure 7 with several recursion levels we will not
recognize the expected convergence rates. This
is due to the fact that the used error estimators do
not measure the distance orthogonal the curves.
To overcome this lack we have to correct the
parameter values for v originally given as v(si)
according to (9) in such a way that we measure or-
thogonal. Using p = x(si) this can be formulated

as
f (v) = (ẏ(v))T (y(v)−p) !

= 0. (22)

The derivative of this function is

f ′(v) = (ÿ(v))T (y(v)−p)+(ẏ(v))T ẏ(v) (23)

and it is easy to implement Newton’s method for
(22). For surfaces this works similarly. (22) is
replaced by the system

f (u,v) =
(

xT
u (u,v) (x(u,v)−p)

xT
v (u,v) (x(u,v)−p)

)
(24)

and the derivative is given by (we omit the pa-
rameters and use d = x(u,v)−p)

f ′ =
(

xT
uu d+xT

u xu xT
uv d+xT

u xv
xT

uv d+xT
u xv xT

vv d+xT
v xv

)
. (25)

This parameter correction already leads to an er-
ror estimator that reflects the expected conver-
gence rates.

The results can be improved if we iterate ac-
cording to (18) – (21) with the corrected v’s and
thus modified z1, z2 and z3 in (20). This decou-
pled iteration only slowly converges towards the
optimal solution. This is due to the fact that ap-
proximation (18) minimizes a point distance and
not the curve distance.

In [8] and [9] an approach based on the min-
imization of a quadratic approximant of the
squared distance function was introduced. Un-
fortunately in general the second order Taylor
approximant does not lead to symmetric positive
definite system matrices and for this reason we
can not guarantee the existence and uniqueness
of the minimum. For this reason the second order
Taylor approximation was modified to guaran-
tee positive definiteness. But this modification
destroys the second order and thus the claimed
quadratic convergence of that method. Neverthe-
less such methods need less iterations. But the
drawback is a computational overhang. For in-
stance the curvature – the principal curvature and
directions for surfaces – has / have to be com-
puted. Furthermore the parametrization is not

6

really totally avoided. In [4] the behaviour of
the point distance minimization (PDM) and the
squared distance function minimization (SDM)
was studied. Regarding run time the authors con-
clude: Our experiments show that the time used
by SDM on iterative optimization is about 30%
to 50% more than PDM because SDM needs ex-
tra time to set up the more complex SDM error
function.

We have used a different approach. This avoids
the curvature computation. Furthermore our
method can still be written in the form of (18)
which is not the case for SDM. We will demon-
strate the idea of our method for the approxima-
tion with B-splines. Due to (5) and (6) B-spline
curve or surface points are linear combinations
of the control points.

xi = x(ti) = ∑
j

ai jp j. (26)

The xi correspond to curve points yi = y(vi) and
we have to minimize the distances ∥xi−yi∥2. We
collect the control points pi j in a vector p, the
yi in a vector y and coefficients ai j in a sparse
matrix A. Now PDM is simply

∥Ap−y∥2→min. (27)

For the solution of (27) we can use orthogonal
transformations or the normal equations. For
more details especially on surfaces an volumes
see ([1]). To reduce the number of parameter
corrections (the outer loop) we minimize the dis-
tances of the yi to the linear approximation of
y(v) ad the point yi. Note that this coincides with
the squared distance function for points on the
curve. Thus we have to minimize

∥nT
i (xi−yi)∥2 (28)

where ni = n(vi) is orthogonal to ẏ(vi) and nor-
malized. Notice that (28) is a minimization over
the control points p j. To use matrix notations we
have to separate the x and y components. We de-
fine Nx = diag{ni,x}, Ny = diag{ni,y} and collect

the terms nT
i yi in a vector d. Now we can write

this part as

∥Nx Apx +Ny Apy−d∥2→min. (29)

For our final minimization problem we use (29)
and a scaled portion of (27). Here we have to split
p into its x-components px and y-components py.
The same way we split y into yx and yy. With

Â =

⎛⎝ λ A 0
0 λ A

Nx A Ny A

⎞⎠ (30)

p̂ =

(
px
py

)
, (31)

and

ŷ =

⎛⎝ λ yx
λ yy

d

⎞⎠ (32)

our minimization problem now reads.

∥Â p̂− ŷ∥2→min. (33)

Thus again we can use orthogonal transforma-
tions, the normal equations or iterative methods.
Especially for recursive approximation of sur-
faces and volumes the iterative methods are much
faster. If only equidistant knot vectors are used a
matrix free implementation is possible. The pa-
rameter λ ≥ 0 is chosen depending on the error
estimator. For small errors we use smaller λ s. If
the oversampling is high enough we even choose
λ = 0 for high accurate approximations.

As iterative solver we normally use CGLS,
a Conjugate Gradient method for linear Least
Squares (also called CGNR in [10]). To apply
CGLS we only need an effective implementation
to multiply the system matrix A and its trans-
pose AT with vectors. It should be noted that in
our applications A is very sparse and for recur-
sive strategies we have very good starting vectors.
For further informations and details on the use of
CGLS see [10] or [3].

7

4. OBJECT RECOGNITION
Sometimes it is useful to have tools that recog-
nize given curves as lines, circles or conics. We
have implemented that in WinCAG in several
ways. In this section we will report on the module
that generates data polygons by free-hand mouse-
drawing and then determines the best fit from a
given list of objects. An example is shown in
figure 1. The three recognized objects are a line,
a circle and an ellipse. Hyperbolas and parabolas
will be recognized too. For this purpose the user
has to give tolerances for each object. Since for
instance an ellipse normally fits better than a cir-
cle, the tolerance for circles must be chosen larger
than that for ellipses. The system stores the data
polygons and the user can force it to compute a
given kind of curve. The curves corresponding to
the data polygons (xi,yi) i = 0,1, . . . ,N are com-
puted by least squares solutions. For this reason
we start with the implicit form of lines, circles
and conics:

ax+by+ c = 0
(x− xm)

2 +(y− ym)
2− r2 = 0

i+ j≤2

∑
i, j=0

ai j xi y j = 0
(34)

For circles the equations seem to be non-linear.
But

(x− xm)
2 +(y− ym)

2− r2 =
−2xxm−2yym + x2

m + y2
m− r2 + x2 + y2 =

−2xxm−2yym +α + x2 + y2

(35)

with the substitution α = x2
m + y2

m− r2 it is lin-
ear in xm, ym and α and has the same solution
as the original system. If we plug in the (xi,yi)
we get a linear least squares problem for the co-
efficients in all cases. For lines and conics the
coefficients have an arbitrary non zero scaling
factor. We can choose one of them to be one.
In very few cases the chosen coefficient must be
zero and we have to revise our guess and have
to solve the system once more. The principal
axis transformation is used to get the kind of the

conic. The conic fit by the implicit form does not
yield the optimal (non-linear) least squares solu-
tion given by the parameterized form. Thus we
determine the parameters for the data points and
make some Gauss-Newton steps to improve our
result. If we are close to a parabola the system
computes a least squares solution for this case,
too. Then the user can optionally decide to take
the parabola.

If the distances to all of the above objects is
to large the system will compute a B-spline ap-
proximation. Figure 3 shows an example for that
situation. Details on spline approximation have
been given in the previous section. The only dif-
ference here the determination of the parametriza-
tion of the knot vector. We use a chord length
parametrization since it is known that in general
this leads to small approximation errors. We refer
to [6]

If we want to force the system to compute a
special conic section we have have to make some
extra efforts for parabolas and in the case the
principal axis transformation does not lead to the
right kind of the conic. Parabolas do not cause
a real problem. in general the implicit solution
leads to feasible initial values for the non linear
iteration.

Next we describe the approach for forcing an
elliptic fit. With the normal form

xn(t) =
(

a cos(t)
b sin(t)

)
(36)

and the rotation matrix

D(ψ) =

(
cos(ψ) sin(ψ)
−sin(ψ) cos(ψ

)
(37)

the general form of an ellipse is given by

x(t) =
(

xm
ym

)
+D(ψ)xn(t). (38)

We have five parameters a, b, xm, ym and
ψ and denote the corresponding Ellipse by
E(a, b, xm, ym, ψ). Given a point xi and the pa-
rameters a, b, xm, ym and ψ we can compute

8

the distance di(xi; a, b, xm, ym, ψ) from the point
xi to the ellipse E(a, b, xm, ym, ψ). For a point
cloud xi, i = 1, . . . ,N we can define the distance
function as (in di we have omitted the arguments)

dist(a, b, xm, ym, ψ) =
N

∑
i=1

di. (39)

This function is highly non linear. For the
minimization of dist(a, b, xm, ym, ψ) we use the
Nelder-Mead-method published in [7]. This
method has only linear convergence but is very
robust and does not need any derivatives. As
starting values we use ψ = 0, a = b = r with r
and xm and ym from a circle approximations. In
our examples this method never fails.

5. RECONSTRUCTION FROM IMAGES
For the reconstruction of curves from images we
only assume that the input format can be trans-
ferred into RGB-format. In a first step we clus-
ter the contained colors in the 3D RGB color
space and compute local color centroids. The
pixels of each centroid are handled separately
looping over all centroids. Starting with a low
number of neighbored points we use the methods
from the previous section to compute initial ob-
jects of different kinds. In a next step we insert
further points that have a short distance to the
previously computed objects and recompute the
minimization problems with more points. If no
further points close the actual objects are found
and the extension is not negligible we store the
best fit and drop the used points from our list.
If at the end of this process a significant num-
ber of points is remaining we try to use B-spline
fits with standard methods for point clouds to
get connect curve parts. This may fail for some
points and we have to leave this points untreated.
In our examples this normally only happens for
noisy pixels that do not belong do any curve part.
The methods only fail for scenarios with a very
large number of intersections or very close curves.
This is due to the fact that we remove the used
points and for the last curves in this cases we do
not have enough points remaining for the curve

reconstruction.

6. CONCLUSIONS
We have demonstrated the potential of effective
approximations with Bézier or B-spline curves
applied on scattered data or the conversion of
curves given in other formats. One of the main
aspects is the preparation of websites and / or
further use in a CAGD system. The major ad-
vantage of the used vector graphics formats is
the very small size of the files and the possibility
to zoom without grid pattern effects. This leads
to the usability on tablets and smartphones and
the potential to make significant improvements
in how geometry is learnt and taught.

INTERNET SOURCES ON VECTOR
GRAPHICS

• PostScript Adobe: http://partners.
adobe.com/public/developer/
ps/index_specs.html

• Wikipedia-PostScript: http:
//de.wikipedia.org/wiki/
PostScript

• Scalable Vector Graphics: http://www.
w3.org/TR/SVG11/

• The authors website on this topic:
http://www.igpm.rwth-aachen.
de/brakhage/ICGG2014

REFERENCES
[1] K.-H. Brakhage. High quality mesh gen-

eration and sparse representation using b-
splines. In B.K. Soni. et al, editor, 7th In-
ternational Conference on Numerical Grid
Generation in Computational Field Simu-
lations. Resort Whistler, British Columbia,
Canada, September 25-28 2000.

[2] K.-H. Brakhage. WinCAG - dynamical ge-
ometry for teaching and learning. In 13th
International Conference on Engineering
Computer Graphics and Descriptive Geom-
etry. Dresden, Germany, August 3-8 2008.

9

http://partners.adobe.com/public/developer/ps/index_specs.html
http://partners.adobe.com/public/developer/ps/index_specs.html
http://partners.adobe.com/public/developer/ps/index_specs.html
http://de.wikipedia.org/wiki/PostScript
http://de.wikipedia.org/wiki/PostScript
http://de.wikipedia.org/wiki/PostScript
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www.igpm.rwth-aachen.de/brakhage/ICGG2014
http://www.igpm.rwth-aachen.de/brakhage/ICGG2014

[3] K.-H. Brakhage. Grid generation and grid
conversion by subdivision schemes. In
B.K. Soni et all, editor, 11th International
Conference on Numerical Grid Generation
in Computational Field Simulations. Mon-
tral, Canada, May 24-28 2009.

[4] K. Cheng, W. Wang, H. Qin, K.-Y. Wong,
H. Yang, and Y. Liu. Fitting subdivision
surfaces to unorganized point data using
sdm. In In Pacific Conference on Computer
Graphics and Applications 2004, pages 16–
24. 2004.

[5] G. Farin. Curves and Surfaces for CAGD.
A Practical Guide. The Morgan Kaufmann
Series in Computer Graphics and Geometric
Modeling, fifth edition, 2002.

[6] M. Floater. Arc length estimation and the
convergence of polynomial curve interpo-
lation. BIT Numer. Math., 45: 679–694,
2005.

[7] J. Nelder and R. Mead. A simplex method
for function minimization. The Computer
Journal, 7(4): 308–313, 1965.

[8] H. Pottmann and M. Hofer. Geometry of
the squared distance function to curves and
surfaces. In VISUALIZATION AND MATH-
EMATICS III, pages 223–244. 2003.

[9] H. Pottmann and S. Leopoldseder. A con-
cept for parametric surface fitting which
avoids the parametrization problem. Com-
puter Aided Geometric Design, 20: 343362,
2003.

[10] Y. Saad. Iterative Methods for Sparse Lin-
ear Systems. SIAM, second edition, 2003.

ABOUT THE AUTHOR
Karl-Heinz Brakhage is member of the Insti-
tute of Geometry and Numerical Mathematics
at the Aachen University of Technology. His

research interests are Computer Aided Geomet-
ric Design, CAx Technologies, Grid Generation,
Scientific Computing, Computer Graphics, and
Development of Education Software. He can
be reached by e-mail: brakhage@igpm.rwth-
aachen.de, by Fax: +49(241)8092317, by
phone: +49(241)8096591, the postal address:
Inst. of Geometry and Numerical Mathemat-
ics / RWTH Aachen / Templergraben 55 / D-
52056 Aachen, Germany, or through the web-
site: http://www.igpm.rwth-aachen.
de/brakhage.

10

http://www.igpm.rwth-aachen.de/brakhage
http://www.igpm.rwth-aachen.de/brakhage

	Introduction
	Some Basics on Béziers and B-splines
	Approximation of Curves and Surfaces
	OBJECT RECOGNITION
	Reconstruction from Images
	Conclusions

