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ABSTRACT: In the present paper we describe the CAGD part of an effort that aimed at the unifi-
cation of the whole geometric preprocessing that preceded the wind tunnel readings with a realistic
air-plane wing model in a recent research project. This preprocessing includes the automated gener-
ation of the CAD models which were used for the manufacturing of the multi-parted wing-fuselage
configuration and the generation of the numerical grids for the corresponding numerical simulations.
Due to the constraints of the project it was decided to employ only exact, watertight, untrimmed B-
Spline representations. From this process we describe the methods and algorithms for automated
generation of multi-parted airplane wings from one or more cross-sections given by point clouds
and the top view of the wing. A rounded wing tip an several types of winglets can be added. Fur-
thermore we can compute and add fuselages to achieve realistic results near the root of the airfoil
wing.
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1 INTRODUCTION ture transfer project we are currently working on
In the Collaborative Research Center SFB 4(irfoils with winglets. The developed tools are
"Modulation of Flow and Fluid-Structure Interbased on B-spline representations. Approxima-
action at Airplane Wings”, the aerodynamics dfon and fairing methods have to fulfill several
high lift and cruise configurations and the inconstraints. These depend upon the manufactur-
teraction of structural dynamics and aerodynaing and the phenomena of adaptive flow solvers
ics are presently being investigated. In the sufor the Navier-Stokes equations. It turned out
project "High Reynolds Number Aero-Structurahat especially for numerical simulation fairing
Dynamics” stationary and unsteady wind tunnef the geometry is very important . We use a fi-
readings with an elastic model have been caite volume method as flow solver. Adaptation
ried out. The experiments were done in the Eand error estimation is based on a multi-scale
ropean Transonic Wind-Tunnel (ETW) in Deanalysis.

cember 2006. The wing corresponds to a cruisethis article we describe some details on meth-
configuration of scale 1:28, whose supercriticatls and algorithms for the automated genera-
cross-section (BAC 3-11) is described in twtion of multi-parted airplane wings from one or
AGARD reports ([9]). The geometry of the BAOmore cross-sections given by point clouds and
3-11 aerofoil cross-section was numerically déie top view of the wing with the following prop-
fined and the design ordinates were providegtties. The relative thickness of the wing (thick-
The tolerances on the profile were given. Theess/chord) can be varied from section to section.
airfoil is modeled as a three parted back-sweftrounded tip with design parameters and GC1-
wing with a rounded tip. To achieve realisticontinuity at the crossing to the wing is automat-
results a half-body is placed between the aically computed. Additionally several types of
foil wing and the wind tunnel wall. For a fu-winglets can be added at the tip. They are de-



termined by a few user-defined parameters. CéhMODEL DESCRIPTION

strained approximation and fairing lead to a vefjirst we have to clarify that in our context here
smooth geometry especially suited for wind tumkhere are two different meanings of the term
nel experiments and numerical simulation. #hord length. In aviation the chord or chord
mounting unit with GC1 fillets to the wing andength is the wing depth. In CAGD the chord
a simplified half of a fuselage are computetength parameterization is an approximated arc-
too. The geometries of those can be modifisehgth parameterization. The concept of building
by changing only a few significant parametera.chord length knot spacing is motivated by the
Especially the fuselage part leads to more re&dlowing idea. If a curve follows very closely to
istic results near the airfoil root. Overall, we¢he data polygon of its interpolated points, then
had success in the effort to unify the whole géie length of the curve segment between two ad-
ometric preprocessing related with this projegacent data points is very close to the length of the
The aim was to produce geometry representdord of these two data points and the length of
tions that are well suited for both the manufathe interpolating curve would be close to the to-
turing process and the grid generation alreadytal length of the data polygon. Thus, if we build
the modeling stage. The basic data exchange tiee knot vector according to chord lengths, the
tween the modeling, grid generation and manparameters will be an approximation of the arc-
facturing software was carried out by IGES filetength parameterization.

Concretely the milling machine employed hyper-

CAD/hyperMill from OpenMind, the inner tech- P K

nical constructions were planed with CATIA, fol ' '
the visualization we used Rhino and for the gri-
generation an in-house code has been develo| .«
that is part of the QUADFLOW project (see [3].
for more details). A necuron (rigid foamed plas
tic) and a steel model for the ETW have a
ready been manufactured. In December 2006
wind tunnel readings have been carried out at t
ETW in Cologne. The data is still under explo
ration. It can be accessed following the UR
http://www.lufmech.rwth-aachen.de/ and the li
"HIRENASD” on that web-page. The remainy
der of this article is organized as follows. To ge
an overview of the desired features of our alg
rithms we summarize the main properties of t
given data and of the model to be achieved. F
thermore we give a brief outline of the construg
tion process. Details on those steps that exha
tively use B-spline properties and algorithms a

given in section 3 and 4. After that we describd™!
an extension of the wing model with a winglet

that is planned for future experiments. Our tech- _ )
niques for planar and volume meshing are bad@dFigure 1 the final manufactured model is

gure 1:Manufactured model mounted ETW.

on the generation of curvature dependent offsefOWN.  The picture shows it mounted in

curves and -surfaces and B-splines, too (see {8 European Transonic Wind-tunnel (ETW) in
for details). cologne. We now give a short overview of the

given data and the different steps resulting in the



model shown in Figure 1.

The main wing for the cruise configuration was
numerically described by the ordinates of 87
points (see [9] for more details). These were
transformed to chord (wing depth) one in a first
step. The cross-sections have to fulfill the follow-
ing conditions afterwards: Start and end point is
(1,0). The leading edge is crossed vertically at
(0,0). Optionally the curve has a given curva-
ture at the nose. The relative thicknesss 11%.
The exact definition at the fuselage will be de-
scribed later. The tolerance due to chord Ienqﬁﬁbure 3:Top view of the multi-parted back-
1 is about 17104, From this information we swept wing

compute smooth B-splines as reference for the

cross-sections. All these computations are done

in 2d space. The result is shown in Figure 2 Tﬁréounting unit a cylindrical continuation can be
' " added (see Figure 4 and Figure 5). The mount-

smooth spline

3
smooth spline at fuselage ’—?
\ I
|

Figure 2:Design ordinates, splinert(= 11%) \L/
and spline at fuselaget(= 15%).

Figure 4:Top and front view of mounting unit
with continuation

next step is to describe the top view of the multi-

parted back-swept wing. This can be done with

an arbitrary 2d CAD program. We use WinCA@g unit is given by top and front view and some
([2], [4]). The only information we need fromrounding values. From the fillet only the top view
this step is the front position of the cross-sectiorsgiven. To avoid gaps, the fillet is not computed
(A), their depth(l;) and the relative position & as a trimmed surface. For this reason the B-spline
with respect téA, (= A4 here, compare Figure 3)representing the cross-section at the fuselage has
R determines the shape of the wing tip. to be split up into five parts. This is done by
The factors thickness/chord for the differeriinot insertion. The fillet and the mounting unit is
cross-sections can be defined in the 3d modutemputed as one block. Figure 5 shows the final
For our wing these factors are all equal to 11%esult near the root. Hereby the main part of the
At the fuselage the profile is treated in a differemting is defined by a variable number of cross-
way. The enlargement of the relative thicknesgctions which are connected by ruled surfaces.
with respect to the previous section is only doriéhe plot shows about twice as many isolines as
in the lower part of the profile (see bottom plot afontrol points in each direction. Moreover the
Figure 2). Between the wing and the blend to tlentinuation to pass the fuselage and the blend to



we have about twice as many isolines as control
points in each direction.

3 B-SPLINES

3.1 Main Notations
Throughout this paper we write B-spline curves
in the form

Figure 5:View of the model near to the root with N
mounting unit. X(t) = Z)piNi[’)T (t) (1)
i=

the mounting block can clearly be seen. In thghere N(t) is the i-th normalized B-spline
next sections we will give more details on thedenction of orderp (degreep — 1) correspond-
computations. The sensors and cables have tdnggto the generally non-uniform knot vector=
placed inside the wing. The necessary thickndésti,- .-, tn+p). Thepj are calledcontrol or de
of the aerofoil is roughly known from stress angoor points. They form (in ascending order) the
eigenfrequencies computations (FE shell modsintrol polygon. We usually assume that is
considering webs) and is of variable size. Therelamped, i.e.fo = ... =ty andtni1 = ... =
fore a variable inner offset surface of the winly+p. For the sake of simplicity we writé\”
was computed. All detail constructions for thifistead ofN"; since it becomes clear from the
inner equipment have to remain inside this surame of the function argument what the knot vec-
face. They were done with the commercial sofier is. Mostly we havep = 4 and in this case we
ware CATIA. even writeN; instead oﬂ\lif’T. Surfaces are repre-
The flow results near the root of the airfoil aréented by B-spline tensor products of the form
not very realistic if it is directly mounted on the N M

wind tunnel wall. For this reason we have place Z) Z)pij Nip(u)N]q(v). (2)
the simplified half of a fuselage between the wing i=0 =

a.”d the W'nd tunnel wall. The model is Shown."ﬂhe extension to volumes is straight foreword.
Figure 6. Figure 1 shows the whole constellation

3.2 Basic properties

We will now summarize those properties of B-
splines which we needed in this paper. We start
with B-spline functions and will then report on
curves, surfaces and volumes.

A B-spline function of orderp is piecewise a

Figure 6:Simplified fuselage. polynomial of degregp— 1. It can recursively
be computed by

. . . p>1 : NPt) = i NP
mounted in the ETW. Notice that there is no di- (t) tivp-1=ti " )+

rect contact between the airfoil and the fuselage. MN-p_l(t)

H H . ti+p—ti+l |+1

A labyrinth-sealing was constructed to avoid a )
flow into the inner part. To make that construc- . :

. . . . a 1 - Nl(t) — 1 t| St < tH—l

tion as easy as possible the intersection areawBs=+ - N 0 elsewhere

constructed in such a way that it is flat. For the
visualization of this feature we have extendddri =0,1,...,N. It is easy to verify thaNip(t)
(closed the surface shown in Figure 6. Agaihas local supporfti,ti|p) (NP(t) = 0 for t ¢



[ti,ti+p)) and all B-Spline functions are positiveThe extension to surfaces and volumes is straight

Another important property is forward if we notice that for instance
. . N,M
Theorem 1 Th_e_ B-spllne_ functions of every or- X(UV) = 3 pij Nip(u)NJ (v)
der p are partition of unity orjtp_1,tn,1), that i,j=0
is N M
= (2PN N'(v) (@)
Y NPt =1. (4) N q
| = 2 Pj (UN;(V)

o

For the derivatives of the normalized B-splin

functions we have the following The same way we can handle derivatives. Using

Theorem 2 we get

Theorem 2 Theorem 5

p-1 p-1 I
Nf”<t>=<p—1>{ N N } 6) (x(t) = (IzpiNi"m)

ti+p—1—ti t|+p_t|+1 )
;pi (Nip(t))

The continuity of the B-spline functions is char-

acterized by the following - %pi(p— 1)
p—-1 Np 1

Theorem 3 B-spline functions of order p are {t:\lﬁp_l()ta t.ﬁ,ﬁtfjl (8)
CP-'~1.continuous at a knot of multiplicity I. ~ _

S itk (- PN (D)
Remark: If we have only single knots in the inte- _ IZV' N_pfl<t>
rior, the B-spline functions ar€P—2-continuous - ’
on ftp1,tu.1]. (x(1)" = aN"().

Next we state some important properties of B-

spline curves, surfaces and volumes. If we U$gys (x(t)) is a B-spline curve of ordep— 1.

the recursion formula of (3) for a B-spline curvegy surfaces and volumes partial differentiation
and rearrange it, we get the following reduces the order for corresponditigection

For more detailed information on B-splines see

Theorem 4 [8]. A comprehensive survey on curves and sur-
x(t) = ZpiN-p(t) faces can be found in [1].
— zp, <t|+::: i' tINID L) 3.3 Interpolation with B-Splines
fip—t yp—1 Now we assume that a set of poingsfor i =
Tty Nl (t)> 0,1,...,N— p+2 is given and we search for a

_ Z . t—t _p tt_i+pfl_tt. pi—1> (6) B-spline passing through this points. For this
L e purpose we first additionally assume that a knot-

1
NP~ 1(t) vector
_ 1 p
- ZpN () T:(to :...:tp_1<tp<tp+1<... (9)

is given (normally we use the chord length to

Repeating the above process and noticing that gignpute this vector) to build the B-Spline curve
weights ofpI and pI 1 add to one (Theorem 1)

we get the efficient and stable algorithm of de - N Pn
Boor for the point wise computation aft). X(t) = %p, N(©) (10)



If we want to interpolate at the knots, we get thEhe resulting system matriX is tridiagonal for
interpolating conditions the cases a) and b). The control points can eas-
ily be computed from this system i@(N) time
X(tiyp-1) =Xi,1=0,1,..,N—p+2. (11) by Gauss-elimination and back substitution after-
wards. The not a knot condition results in two
These ard&l — p+3 conditions for théN +1 con- equation with entries for the first five and the last
trol pointsp;. Thus forp = 4 we can formulate fiye control points. Two pre-elimination steps for
2 further conditions. The following four condieach of them yield a tridiagonal system again.
tion sets are of practical use and therefore imp@my for the periodic case d) we have a fill-in
mented in our system: in the last column and row during the Gauss-

a) Vanishing curvature at the beginning and tifg“triglr?ztrfg ége(pl)\ls) al;;itnr.levertheless the compu

end of the curve. For surfaces we get a matrid, for the u-
h(grection andA, for the v-direction. Now the
collections of control point® and interpolation
points X are matrices of vectors [2 or 3D).

c) Not a knot condition. This means the curvAgain we have add conditions at the boundary
is C3 at the second and last but one interpUrves. Notice that at the boundary corners we
lation point. have 4 undetermined conditions. This can be

resolved by choosing awist vector(the partial

d) We construct a periodicC2-continuous derivativex,y at every corner). In standard litera-
curve (only reasonable ¥ = Xn_2). ture this is solved the following way: LeedS)

be the vector obtained by catenating the columns
Now we place all the control points in a vec- of a matrix S; first column of S first, then sec-
tor of 2D- or 3D-vectorsp and the interpola- ond and so on. In MatLab notation this writes as
tion pointsx; in x. Due to the local support ofyeqS) = (). This concept can be generalized to
the normalized B-spline functions the conditiomatrices of vectors and the 3D case, but there is
X(ti+3) = x; results in a linear equation of thgg direct MatLab notation. By we denote the
form standard tensor product (Kronecker product, see

[10] for more details on tensor products). In 2D

ai Pi + BiPi+1+ Vi Pit2 = Xi (12) the interpolation conditions result in the follow-

ing equivalent equations:

b) Given derivatives at the beginning and t
end of the curve.

with Bp = Yo = 0 andan_» = Bn_2 = 0. Vanish-
ing curvature yields two equations of the form: (A @A) P() = ;((:). (16)

appo+bop1+cop2 =0

AN DN+ D PN - Cu P 0 (13) To avoid tensor product matrices we write the re-
N—2+DNPN-1+CNPN =

sulting interpolation problem in the form

Given derivatives result in: Al PAJ _ >~(7 (17)

by pilo_plo;rct’)\logNl _ :ﬁl (14) which is equivalent to (16). Now a Gauss-
elimination step regarding, not only works on
If we plug in the equations (13) (or (14) respe®ne column vectok, but on all columns o¥.
tively) at the second and last but one position vgalogous the elimination regardi#g works on
end up with a sparse linear system all rows ofX. The same is true for back substitu-
tion. If we use standard indiceandj for the ele-
Ap=X. (15) ments (3D vectors) of we also say\, acts on all



j andAy on alli. With theL-U-decompositions For surfaces and volumes the situation is a lit-

Ay = LyUy andA, = Ly Uy this can be written as tle bit more complicated. We still want to use
. the structure of (18) instead of (16) for oQFR-

APA) =L U,PUJL] =X. (18) decomposition. At a first glance this is a slight

. modification of the standard least squares ap-
We need the 3D case for the volume grids arouncl . .0 ot rapidly brings down computa-

our models. It is obtained from the tensor prog-

opal time and space. In the surface case this
uct nature analogous to the 2D case above, Qut .. . . ) )

. ) can still be written in standard matrix notation as
we cannot use thstandardmatrix notations as

in (18). We can only write follows: H T H
] APA] =X, =
(Au@ (A@A)IP() =X().  (19) HQURMQVRV)T—XHE = (21)
Note thatA,, A, andA,, are still tridiagonal ma- HRuPRJ _ QI)ZQVHZ — min

trices. Now there are the indicgg andk forthe o
elements OR andAu acts on a”J , k’ AV on all i’ k Pis Computed by backward substitution from left

andA,, on alli, j of X. Thus our algorithms makeWiTtrl Ry and right withR on the upper left part of
use of the sparsity of the system matrices in tRl X Quv- Thus we have minimized the 2-norm in-

same way as above. stead of the Frobenius-norm, which corresponds
to the standard least squares approximation.
3.4 Approximation with B-Splines The following theorem is known

_If the data comes from measurements and t Seorem 6 Let Ac R™M with m> n. Then

is not exactinterpolation leads to non smooth

curves. For this reason we need methods for ap- 1A]2 < [|AE < VNl A2. (22)
proximation and fairing. Figure 2 shows an ex-

ample obtained with our methods. Since theRat we can proof that for matrices arising from
are some constraints like fixed points, tanger@sor products like (21) in the above theorem
and curvature usual CAD Systems can not Bguality holds between the Frobenius- and the 2-
used for our approximation task. Thus we ha@®@rm. Furthermore this result can be extended to
to deve|0p Specia| a|gorithms for this Stage H’ﬂe case of volumes. Thus it leads to algorithms
our modeling process. If we have more daf@r the standard 2-norm approximation. Their
points and constraints than control points we c&AMmplexity is nearly proportional to the number
no longer fulfill the equations like (15), (18) oPf approximation points.

(19). Instead we solve the corresponding (|i,I~f_there is no tensor product structure we switch
ear) least squares problem. If the problem is tor an iterative method. We have decided to use
tensor product structure we have similar equaGLS, a Conjugate Gradient method for linear
tions as above. But know the systems are lgfast Squares (also called CGNR in [11]). The
bandwidth four and over-determined. Therefof@mplexity is governed by two (sparse) matrix-
we replace thé.-U-decomposition by th€-R- Vvector multiplications withA and AT. Above

decomposition. For (15) this is straight foreword@e have totally avoided the normal equations for
least squares problems, because they are ill con-

[Ap—X[l2 = [[QRp—X||2 ditioned (huge condition number &' A) very

= |Rp—QT&||2. (20) often. Using CGLS we still avoid to buil&" A
and having the huge condition number regard-

The upper part (N+1 equations) can be solved Ing precision, but we can not avoid its influence

back substitution. In the lower part we have onlyn the convergence rate. Notice thaand AT

zeros inR and the corresponding right hand sidare sparse matrices, baf A is not. Using B-

gives us the residual of the overall problem. splines of ordelp = 4 surface points depend on



at most 16 control points and volumes of at mosplit according to Figure 4. After that we can
64. These values limit the number of non zero ecenstruct the blend to the mounting unit. The
tries inA. Therefore CGLS is an efficient methodontrol points of the top and bottom surface can
to solve the least squares problems arising frdra seen in Figure 7

B-splines because it makes extensive use of the
sparsity of the system matrix.

4 SOME SPECIAL STAGES OF THE THE
CONSTRUCTION

In this chapter we will give some details on se-

lected steps of the construction. The properties

stated in the previous section will intensively be

used.

4.1 The reference cross-section Figure 7:Control points of blend and mounting
In our case the cross-section was given by mea- unit.

surements in form of ordinates for points Thus

we have to start our considerations with a (pla-

nar) cloud ofM + 1 sorted pointx;. For the 4 5 The simplified fuselage

parameterization we compute the chord lengfiriq e 6 we have already seen the shape of a
(CAGD meaning) knot spacing of the corresimyjified fuselage and the control points of the
sponding curve(t). It gives us an initial guess ofg_gp|ine surface representing it. We start the con-
the parameter valuggfor x;. From the sequenceyction with a 2D sketch of the cross-sections in
tj we build theN — p+3 interior knots; insuch a v, orthogonal directions (see Figure 8). They
way that the density of thiaccords to that of thegre modeled as B-splines. The next step is to
tj. The wanted tolerance (maximum distance .o mnte a periodical surface that passes these
between given points and final curve) is split intg 45 sections. We use elliptical arcs for this pur-

€ = €1+ €&, the tolerance for the approximationose Then a cylindrical part is place in the mid-

and that for the fairing process. The number ffg of the surface. This done by inserting knots,
control points is adapted in such a way,

that o4p stretching the parameterization and the con-

curve fulfills trol points on a straight line. Finally we take care
. that enough control points are planar to guaran-
mjaxmtm IXj =x(0)ll2 < €. (23) tee that the intersection with the wing is planar

(compare section 2).
This is done for instance by repeatedly solving

(20) until we get the smalle$t that fulfills (23). 4.3 Winglet construction

Additionally we adjust the parameterization dh [5] algorithms for generating airplane wings
the curve to arc length. It is much easier to fuler numerical simulation and manufacturing
fill the constraints on tangents and curvature were presented. We have enhanced the methods
that form. For more details on such approximagiven there by algorithms for winglet construc-
tion problems see [7]. In a second step the fairitigns. A final result is shown in Figure 9. The ba-

is done in such a way that the third derivative &c idea is to determine the necessary parameters
close to a constant. For this process the mowe-top and front view and then do all computa-
ments of the control points is restricted by th#ns directly on the control points. The required
distancee, to guarantee that the overall error isiodifications on the top view (compare Figure 3)
limited by €. The results can be found in Figare shown in Figure 10. Again WinCAG is used
ure 2. The last step on the cross-sections is fioe these construction steps. We mark the bend-
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Figure 10:Winglet construction - top view.

To receive satisfactory results several knots have
to be inserted for the-direction (see Figure 11).

N

middle curve
20mm orthogonal
offset middle curve

Figure 8:Sketches for the fuselage.

ing positionxg and add an additional dihedral an-
glea. From this the new position&), andA; and
the wing chordd), andlf are determined. The<¢" c X x d X,

suggestion folR is to use the same shortening

as in the original case without the winglet. Next

imagine a horizontal wing in-direction and the  Figure 11:Winglet construction - front view.
(horizontal) plane of the wing chordz £ 0). In

this plane the control points of our surfaces have

(x,y)-coordinates and a certain height (positive CONCLUSIONS

or negative). Bending the plane at an axisyin In this paper we have described the use of B-
direction with radiug (see Figure 11) we transspline techniques for the automated generation
form the §,y)-coordinates of the control pointsof sparse, watertight B-spline models for wind
Then we add their previous height perpendicufamnel wing-fuselage configurations. Classical
to the bended plane receiving the control poirisols have been modified and adapted to the spe-
of the patches describing the winglet and its tipial requirements of this project. The resulting




geometry can be transferred without conversions
or approximations between the various software
which was used for the manufacturing, techni-

International Conference on Numerical Grid
Generation in Computational Field Simula-
tions San Jose, USA, June 11-18 2005.

cal construction and grid generation by IGES

files. Moreover, the parameters of the constrJg]
tion, like profile ordinates, bending radii, sweep
angle, etc. can easily be modified since the mod-
eling algorithms have been automated.
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