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In this talk we describe an all Mach scheme for the Euler–Korteweg model. In
non-dimensionalized form the Euler–Korteweg model reads
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where ρ is the density, v the velocity, γ > 0 is a capillarity coefficient, M > 0
is the Mach number and p = p(ρ) is the pressure, given by a non–monotone
constitutive relation such that the first order part of (1) is of hyperbolic-elliptic
type. The model can be used to describe non-viscous, compressible multi-phase
flows. Complemented with proper initial and boundary data solutions of (1)
conserve the energy ∫
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where W and p are related via p(ρ) = ρW ′(ρ) −W (ρ). The construction of all
Mach schemes is particularly interesting for compressible multi-phase flows as
the local Mach numbers in both phases differ strongly.

Our algorgorithm is related to the Algorithm presented in [1] for the Euler
equation. The convection term in (1)1 and the pressure and capillarity terms in
(1)2 are discretised implicitly. In each time step we need to solve an (implicit)
time step of a Cahn-Hilliard equation with non-constant mobility to determine
the new density distribution and an explicit equation to determine the new
velocity distribution.

We obtain a fully discrete finite difference scheme which conserves mass and
satisfies a discrete energy dissipation inequality, i.e. a discrete version of (2) can
only grow by O((∆t)2) per time step, for a time step restricted independently
of M . In addition, we show that in the low Mach limit our scheme converges to
a stable discretisation of the low Mach limit of (1), i.e. it has the ’asymptotic
preserving’ property. We complement our theoretical findings by numerical
experiments in 1 and 2 space dimensions.
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