An all Mach scheme for the Euler-Korteweg model
 Jan Giesselmann

In this talk we describe an all Mach scheme for the Euler-Korteweg model. In non-dimensionalized form the Euler-Korteweg model reads

$$
\begin{align*}
\rho_{t}+\nabla \cdot(\rho \mathbf{v}) & =0 \\
(\rho \mathbf{v})_{t}+\nabla \cdot(\rho \mathbf{v} \otimes \mathbf{v})+\frac{1}{M^{2}} \nabla p(\rho) & =\frac{\gamma}{M^{2}} \rho \nabla \Delta \rho \tag{1}
\end{align*}
$$

where ρ is the density, \mathbf{v} the velocity, $\gamma>0$ is a capillarity coefficient, $M>0$ is the Mach number and $p=p(\rho)$ is the pressure, given by a non-monotone constitutive relation such that the first order part of (1) is of hyperbolic-elliptic type. The model can be used to describe non-viscous, compressible multi-phase flows. Complemented with proper initial and boundary data solutions of (1) conserve the energy

$$
\begin{equation*}
\int \frac{1}{M^{2}} W(\rho)+\frac{1}{2} \rho|\mathbf{v}|^{2}+\frac{\gamma}{2 M^{2}}|\nabla \rho|^{2} d x \tag{2}
\end{equation*}
$$

where W and p are related via $p(\rho)=\rho W^{\prime}(\rho)-W(\rho)$. The construction of all Mach schemes is particularly interesting for compressible multi-phase flows as the local Mach numbers in both phases differ strongly.

Our algorgorithm is related to the Algorithm presented in [1] for the Euler equation. The convection term in $(1)_{1}$ and the pressure and capillarity terms in $(1)_{2}$ are discretised implicitly. In each time step we need to solve an (implicit) time step of a Cahn-Hilliard equation with non-constant mobility to determine the new density distribution and an explicit equation to determine the new velocity distribution.

We obtain a fully discrete finite difference scheme which conserves mass and satisfies a discrete energy dissipation inequality, i.e. a discrete version of (2) can only grow by $\mathcal{O}\left((\Delta t)^{2}\right)$ per time step, for a time step restricted independently of M. In addition, we show that in the low Mach limit our scheme converges to a stable discretisation of the low Mach limit of (1), i.e. it has the 'asymptotic preserving' property. We complement our theoretical findings by numerical experiments in 1 and 2 space dimensions.

References

1. Pierre Degond and Min Tang. All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys., $10(1): 1-31,2011$.
