344 RWTH Publication No: 47301        2012        IGPM344.pdf
TITLE A Stabilized Finite Element Method for Advection-Diffusion Equations on Surfaces
AUTHORS Maxim A. Olshanskii, Arnold Reusken, Xianmin Xu
ABSTRACT A recently developed Eulerian finite element method is applied to solve advection-diffusion equations posed on hypersurfaces. When transport processes on a surface dominate over diffusion, finite element methods tend to be unstable unless the mesh is sufficiently fine. The paper introduces a stabilized finite element formulation based on the SUPG technique. An error analysis of the method is given. Results of numerical experiments are presented that illustrate the performance of the stabilized method.
KEYWORDS surface PDE, finite element method, transport equations, advection-diffusion equation, SUPG stabilization
DOI 10.1093/imanum/drt016
PUBLICATION IMA journal of numerical analysis
IMAJNA 34(2), 732-758 (2013)