441
|
RWTH Publication No: 565803 2016   IGPM441.pdf |
TITLE |
Adaptive Anisotropic Petrov-Galerkin Methods for First Order Transport Equations |
AUTHORS |
Wolfgang Dahmen, Gitta Kutyniok, Wang-Q Lim, Christoph Schwab, Gerrit Welper |
ABSTRACT |
This paper builds on recent developments of adaptive methods for linear transport
equations based on certain stable variational formulations of Petrov-Galerkin type. The key issues can be summarized as follows. The variational formulations allow us to employ meshes with
cells of arbitrary aspect ratios. We develop a refinement scheme generating highly anisotropic
partitions that is inspired by shearlet systems. We establish approximation rates for N -term
approximations from corresponding piecewise polynomials for certain compact cartoon classes
of functions. In contrast to earlier results in a curvelet or shearlet context the cartoon classes
are concisely defined through certain characteristic parameters and the dependence of the approximation rates on these parameters is made explicit here. The approximation rate results
serve then as a benchmark for subsequent applications to adaptive Galerkin solvers for transport equations. We outline a new class of directionally adaptive, Petrov-Galerkin discretizations
for such equations. In numerical experiments, the new algorithms track C2-curved shear layers and discontinuities stably and accurately, and realize essentially optimal rates. Finally, we
treat parameter dependent transport problems, which arise in kinetic models as well as in radiative transfer. In heterogeneous media these problems feature propagation of singularities along
curved characteristics precluding, in particular, fast marching methods based on ray-tracing.
Since now the solutions are functions of spatial variables and parameters one has to address the
curse of dimensionality. We show computationally, for a model parametric transport problem
in heterogeneous media in 2 + 1 dimension, that sparse tensorization of the presently proposed
spatial directionally adaptive scheme with hierarchic collocation in ordinate space based on a
stable variational formulation high-dimensional phase space, the curse of dimensionality can be
removed when approximating averaged bulk quantities.
|
KEYWORDS |
linear transport problems, L2 -stable Petrov-Galerkin formulations, δ-proximality, adaptive refinements, anisotropic discretizations, best N -term approximation
|
DOI |
10.1016/j.cam.2018.02.023 |
PUBLICATION |
Journal of Computational and Applied Mathematics, Volume 340, 1 October 2018, Pages 191-220 |