464 IGPM464.pdf        March 2017
TITLE Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints
AUTHORS Eduard Bader, Mark Kärcher, Martin A. Grepl, Karen Veroy
ABSTRACT In this paper, we employ the reduced basis method for the efficient and reliable solution of parametrized optimal control problems governed by scalar coercive elliptic partial differential equations. We consider the standard linear-quadratic problem setting with distributed control and unilateral control constraints. For this problem class, we propose two different reduced basis approximations and associated error estimation procedures. In our first approach, we directly consider the resulting optimality system, introduce suitable reduced basis approximations for the state, adjoint, control, and Lagrange multipliers, and use a projection approach to bound the error in the reduced optimal control. For our second approach, we first reformulate the optimal control problem using a slack variable, we then develop a reduced basis approximation for the slack problem by suitably restricting the solution space, and derive error bounds for the slack based optimal control. We discuss benefits and drawbacks of both approaches and substantiate the comparison by presenting numerical results for several model problems.
KEYWORDS optimal control, reduced basis method, a posteriori error estimation, model order reduction, parameter-dependent systems, partial differential equations, elliptic problems, control constraints