Dr. Nils Gerhard

Mitarbeiter am IGPM bis Juli 2017

Research interests

  • Discontinuous-Galerkin methods
  • Adaptive multiscale techniques (Multiwavelets)
  • High performance computing


  • M.Herty, S. Müller, N. Gerhard, G. Xiang and B. Wang, Fluid-structure coupling of linear elastic model with compressible flow models. Preprint IGPM Report No. 458, RWTH Aachen, 2016, submitted. [Preprint]
  • N. Gerhard , D. Caviedes-Voullième, S. Müller and G. Kesserwani, Multiwavelet-Based Grid Adaptation with Discontinuous Galerkin Schemes for Shallow Water Equations. Journal of Computational Physics, 301, 265-288, 2015.
  • G. Kesserwani, D. Caviedes-Voullieme, N. Gerhard and S. Müller. Multiwavelet discontinuous Galerkin h-adaptive shallow water model. Comput. Methods Appl. Mech. Engrg., 294, 56-71, 2015.
  • N. Gerhard, F. Iacono, G. May, S. Müller and R. Schäfer, A High-Order Discontinuous Galerkin Discretization with Multiwavelet-Based Grid Adaptation for Compressible Flows. Journal of Scientific Computing, 62(1), 25-52, 2015.
  • N. Gerhard and S. Müller, Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws: Multi-Dimensional Case. Computational and Applied Mathematics, 35(2), 321-349, 2016 [Preprint].


  • Multiwavelet-Based Grid Adaptation for Shallow Water Equations,
    Advances in Numerical Modelling of Hydrodynamics, Sheffield, UK, 2015
  • Multiwavelet-based grid adaption with discontinuous Galerkin schemes,
    YIC GACM, Aachen, Germany, 2015
  • Numerical Simulation of Tsunamis Using Adaptive Multiresolution Discontinuous Galerkin Schemes,
    WONAPDE, Concepción, Chile, 2016
  • Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws,
    Hyp 2016, Aachen, Germany, 2016

Workshop Organization


  • SS 17 Multiskalentechniken I+II
  • WS 16/17Multiskalentechniken II
  • SS 16: Multiskalentechniken I
  • WS 15/16: Finite Volumen und Finite Elemente Verfahren II
  • SS 15: Finite Volumen und Finite Elemente Verfahren I
  • SS 14: Finite Volumen und Finite Elemente Verfahren
  • WS13/14: Numerische Analysis IV für Mathematiker
  • SS 13: Mathematisches Praktikum
  • WS 12/13:Numerische Analysis III für Mathematiker, Seminar: Modellierung und Simulation
  • SS 12: Numerische Analysis II für Mathematiker
  • WS 11/12: Numerische Analysis I für Mathematike