Dr. Sonja Steffensen (geb. Veelken)

Institut für Geometrie und Praktische Mathematik
RWTH Aachen
Templergraben 55
52056 Aachen

Hauptgegbäude 128
+49 241 80-80-90 650
+49 241 80-92 390
(Nachname)_AT_ igpm.rwth-aachen.de



  • Optimierung mit Partiellen Differentialgleichungen
  • (Optimale) Steuerung Partieller Differentialgleichungen
  • Optimierungsprobleme mit Gleichgewichtsnebenbedingungen (MPECs)
  • Gleichgewichtsprobleme mit Gleichgewichtsnebenbedingungen (EPECs)


  • S. Steffensen, Runge-Kutta Schemes for numerical discretization of bilevel optimal control problems, Preprint, 2015
  • M. Herty, L. Pareschi, S. Steffensen, Mean-field control and Riccati equations, Networks and Heterogeneous Media, Special Issue on Modeling and Control of Social Dynamics, 2015
  • S. Steffensen, Global Solution of Bilevel Programming Problems, Operations Research Proceedings, 2014
  • M.Herty, L. Pareschi, S.Steffensen Implicit-Explicit Runge-Kutta Schemes for Numerical Discretization of Optimal Control Problems, SIAM Journal on Numerical Analysis, 51(4), 2013
  • S. Steffensen, Semismooth Newton Methods for Affine Differential Variational Inequalities, Pacific Journal of Optimization 9(2):323-343,2013
  • H. Th. Jongen, V. Shikhman, S. Steffensen, Characterization of Strong Stability for C-stationary Points in MPCC, Mathematical Programming, 132(1-2):295-308,2012
  • M. Dick, M. Gugat, M. Herty, S. Steffensen,On the relaxation approximation of boundary control of the isothermal Euler equations,International Journal of Control, 85:1766-1778, 2012
  • S. Steffensen, M. Bittner, Relaxation Approach for Equilibrium Problems with Equilibrium Constraints}, Computers and Operations Research, 2011
  • S. Veelken, M. Herty, J.-M. Ngnotchouye, M. K. Banda, Optimal Control of the Euler Equations via Relaxation Approaches, Proceedings in Applied Mathematics and Mechanics, 2010
  • J.-M. Ngnotchouye, M. Herty, S. Steffensen, M. K. Banda, Relaxation approaches to the optimal control of the Euler equations, Computational and Applied Mathematics, 2010
  • S. Steffensen, M. Ulbrich, A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints, SIAM Journal on Optimization, 20(5): 2504-2539, 2010
  • S. Veelken, A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints: Theory an Numerical Experience, Dissertation, Zentrum Mathematik, TU M\"unchen, 2009

Eingeladene Vorträge

  • University of Erlangen-Nürnberg, Erlangen, 2016
  • Institute of Pure and Applied Mathematics, University of California Los Angeles, United States of Amerika, 2015
  • Southeast University Nanjing, China, 2014
  • SIAM Conference on Optimization in San Diego, USA, 2014
  • 26th European Conference on Operational Research in Rome, 2013
  • Workshop on Numerical Methods for Optimal Control and Inverse Problems, TU München, 2013
  • Institute of Mathematical Optimization, HU Berlin, Germany, 2012
  • IFIP TC7 Conference on Modeling and Optimization in Berlin, 2011
  • SIAM Conference on Optimization in Darmstadt, Germany, 2011
  • Workshop on Numerical Methods for Optimal Control and Inverse Problems, TU München, 2011
  • 24th European Conference on Operational Research in Lisbon, Portugal, 2010
  • Annual Conference of the GAMM, Karlsruhe, 2010
  • Annual Conference of the DMV, München, 2010
  • 20th International Symposium of Mathematical Programming in Chicago, Illinois, USA, 2009
  • Second Mathematical Programming Society International Conference on Continuous Optimization, Hamilton, Ontario, Kanada, 2007
  • Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, 2005