| 223 | RWTH Publication No: 47156 2002   IGPM223.pdf |
| TITLE | Convergence Analysis of a Multigrid Solver for a Finite Element Method Applied to Convection-Diffusion Problems |
| AUTHORS | Maxim A. Olshanskii, Arnold Reusken |
| ABSTRACT | The paper presents a convergence analysis of a multigrid solver for a system of linear algebraic equations resulting from the disretization of a convection-diffusion problem using a finite element method. We consider piecewise linear finite elements in combination with a streamline diffusion stabilization. We analyze a multigrid method that is based on canonical inter-grid transfer operators, a "direct discretization" approach for the coarse-grid operators, a smoother of line-Jacobi type and one nonstandard component which is called a "local presolver". A robust (diffusion and h-independent) bound for the contraction number of the two-grid method and the multigrid W-cycle are proved for a special class of convection-diffusion problems, namely with Neumann conditions on the out boundary, Dirichlet conditions on the rest of the boundary and a direction that is constant and aligned with gridlines. Our convergence analysis is based on modified smoothing and approximation properties. The arithmetic complexity of one multigrid iteration is optimal up to a logarithmic term. |
| KEYWORDS | multigrid, streamline diffusion, convection-diffusion |
| DOI | 10.1137/S0036142902418679 |
| PUBLICATION | SIAM Journal of Numerical Analysis, 2004, Vol. 42, No. 3, pp. 1261–1291 |
