Skip to main content
Further preprints in our group
(S. Noelle, doctoral students, postdocs)
In Journals:
-
G. Chen, S. Noelle.
A unified surface-gradient and hydrostatic reconstruction scheme for the shallow water equations.
Journal of Computational Physics 467(1), DOI:10.1016/j.jcp.2022.111463
-
S. Noelle, M. Parisot, T. Tscherpel,
A class of boundary conditions for time-discrete Green-Naghdi equations with bathymetry.
arXive:2106.05048 (June 2021).
IGPM report 516 (2021), RWTH Aachen University.
SIAM journal on numerical analysis 60(5), pp. 2681-2712, 2022
-
V. Kučera, M. Lukáčová-Medvidová, S. Noelle, J. Schütz,
Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations.
arXiv:2011.13753v1 (Nov 2020).
IGPM report 510 (2021), RWTH Aachen University.
Numerische Mathematik, 150 (2022), 79–103, DOI: 10.1007/s00211-021-01240-5
-
Y. Mantri, S. Noelle,
Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law.
IGPM report 507 (2020), RWTH Aachen University. Journal of Computational Physics 429 (2021), 110011, 13 pp.
-
A. Buttinger-Kreuzhuber, Z. Horvath, S. Noelle, G. Blöschl, J. Waser,
A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography.
Advances in Water Resources 127 (2019), 89-108.
-
J. Zeifang, J. Schütz, K. Kaiser, A. Beck, M. Lukacova, S. Noelle,
A novel full-Euler low Mach number IMEX splitting.
Communications in Computational Physics 27 (2020), 292-320.
-
Z. Horvath, A. Buttinger-Kreuzhuber, A. Konev, D. Cornel, J. Komma, G. Blöschl, S. Noelle, J. Waser,
Comparison of Fast Shallow-Water Schemes on Real-World Floods.
Journal of Hydraulic Engineering 146 (2020), 05019005.
-
Y. Mantri, M. Herty, S. Noelle,
Well-balanced scheme for gas-flow in pipeline networks.
IGPM report 480 (2018), RWTH Aachen University. Networks and Heterogeneous Media 14 (2019), 659-676.
-
H. Zakerzadeh and S. Noelle,
A note on the stability of implicit-explicit flux splittings for stiff hyperbolic systems
IGPM report 449 (2016), RWTH Aachen University. Communications in Mathematical Sciences 16 (2018), 1-15.
-
K. Kaiser, J. Schütz, R. Schöbel, S. Noelle,
A new stable splitting for the isentropic Euler equations.
IGPM report 442 (2016), RWTH Aachen University.
Journal of Scientific Computing 70 (2017), 1390-1407.
-
G. Chen and S. Noelle,
A new hydrostatic reconstruction scheme based on subcell reconstructions.
IGPM report 440 (2015), RWTH Aachen University.
SIAM Journal on Numerical Analysis 55 (2017), 758–784.
-
J. Schütz and S. Noelle,
Flux Splitting: A Notion on Stability.
IGPM report 382 (2013), RWTH Aachen University.
arXiv:1412.1595.
Journal of Scientific Computing 64 (2015), 522-540.
-
H. Zakerzadeh,
Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension
IGPM report 455 (2016), RWTH Aachen University.
Mathematical modelling and numerical analysis 53(3) 2019, 893 - 924.
DOI: 10.1051/m2an/2019005
-
H. Zakerzadeh,
On the Mach-uniformity of a Lagrange-projection scheme
IGPM report 422 (2015), RWTH Aachen University.
Mathematical Modelling and Numerical Analysis 51 (2017), 1343 - 1366.
DOI: 10.1051/m2an/2016064
-
H. Zakerzadeh and Ulrik Fjordholm,
High-Order Accurate, Fully Discrete Entropy Stable Schemes for Scalar Conservation Laws
IGPM report 391 (2014), RWTH Aachen University.
published online in: IMA Journal of Numerical Analysis (2015). DOI: 10.1093/imanum/drv020
-
G. Bispen, K. R. Arun, M. Lukacova-Medvidova, S. Noelle,
IMEX large time step finite volume methods for low Froude number shallow water flows.
IGPM report 389 (2014). Communications in Computational Physics 16 (2014), 307-347. DOI: 10.4208/cicp.040413.160114a
-
J. Schütz,
An asymptotic preserving method for linear systems of balance laws based on Galerkin’s method.
IGPM report 366 (2013).
Journal of Scientific Computing 60 (2014), 438-456.
-
F. Zhou, G. Chen, S. Noelle, H. Guo,
A well-balanced stable generalized Riemann problem scheme for shallow water equations using adaptive moving unstructured triangular meshes.
IGPM report 364 (2013), RWTH Aachen University.
International Journal for Numerical Methods in Fluids 73 (2013), 266–283, DOI: 10.1002/fld.3800
-
S. Noelle, G. Bispen, K. R. Arun, M. Lukacova-Medvidova, C.-D. Munz,
A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics.
IGPM report 348 (2012).
arXiv:1412.1606.
SIAM J. Sci. Comp. Vol. 36, Issue 6 (2015) , 989–1024.
-
J. Schütz, S. Noelle, C. Steiner and G. May,
A note on adjoint error estimation for one-dimensional stationary conservation laws with shocks.
IGPM report 338 (2012).
arXiv:1406.3948.
SIAM Journal on Numerical Analysis 51 (2013), 126–136.
-
A. Bollermann, G. Chen, A. Kurganov and S. Noelle,
A well-balanced reconstruction for wetting/drying fronts.
IGPM report 313 (2010), RWTH Aachen University..
arXiv:1412.3580.
Journal of Scientific Computing 56 (2013), 267-290.
-
Y. Xing, C.-W. Shu, and S. Noelle,
On the advantage of well-balanced schemes for moving-water equilibria of the
shallow water equations.
IGPM report 315 (2010), RWTH Aachen University.
arXiv:1502.00800.
Journal on Scientific Computing 48 (2011), 339-349.
-
A. Bollermann, S. Noelle and M. Lukacova-Medvidova,
Finite Volume Evolution Galerkin methods for the shallow water equations with dry beds.
IGPM report 305 (2010), RWTH Aachen University.
arXiv:1501.03628.
Commun. Comput. Phys., 10 (2011), 371-404.
-
C. Steiner and S. Noelle,
Timestep control for weakly instationary flows.
IGPM report 295 (2009), RWTH Aachen University.
arXiv:1404.4503.
In: W. Schröder (ed.), Summary of flow modulation and fluid-structure interaction findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design 109 (2010), 53-76.
- C. Steiner, S. Müller and S. Noelle,
Adaptive timestep control for instationary solutions of the Euler equations.
IGPM report 292 (2009), RWTH Aachen University.
arXiv:1405.3497.
SIAM Journal on Scientific Computing 32 (2010), 1617-1651.
- S. Noelle, Y. Xing and C.-W. Shu,
High-Order Well-balanced Schemes.
In: G. Puppo and G. Russo (eds.), Numerical Methods for Balance Laws. Quaderni di Matematica 24 (2010), 1-66.
- C. Steiner and S. Noelle,
On adaptive timestepping for weakly instationary solutions of hyperbolic conservation laws via adjoint error control.
IGPM report 318 (2010), RWTH Aachen University.
arXiv:1405.6510.
International Journal for Numerical Methods in Biomedical Engineering 26 (2010), 790–806.
(published online in Comm. Numer. Meth. Eng., 1.10.2008).
- N. Pankratz, J. Natvig, B. Gjevik and S. Noelle, High-order well-balanced finite-volume schemes for barotropic flows. Development and numerical comparisons.
IGPM report 274, RWTH Aachen University.
arXiv:1412.3609.
Ocean Modelling, Vol. 18 (2007), 53-79.
- S. Noelle, Y. Xing and C.-W. Shu,
High Order Well-balanced Finite Volume WENO Schemes for
Shallow Water Equation with Moving Water. IGPM report. 270, RWTH Aachen University.
Journal of Computational Physics, Vol. 226 (2007), 29-58.
- M. Lukacova-Medvidova, S. Noelle, M. Kraft, Well-balanced
finite volume evolution Galerkin methods for the shallow water equations.
IGPM report 259, RWTH Aachen University.
arXiv:1501.03618.
Journal of Computational Physics, Vol. 221 (2007), 122-147.
- S. Noelle, N. Pankratz, G. Puppo and J. Natvig, Well-balanced
finite volume schemes of arbitrary order of accuracy for shallow water flows., IGPM report 251, RWTH Aachen University;
Journal of Computational Physics, Vol. 213 (2006), 474-499.
-
S. Noelle, W. Rosenbaum, M. Rumpf,
3D
Adaptive central schemes: part I. Algorithms for assembling the dual mesh.
arXiv:1501.03614
Applied Numerical
Mathematics Vol. 56 (2006), 778-799.
-
S. Noelle,
Abelpreis 2005 an Peter D. Lax.
DMV Mitteilungen 13 (2005), 84-89.
-
T. Kröger and S. Noelle,
Numerical comparison of the Method of Transport to a standard
scheme.
Computers & Fluids, Vol. 34 (2005),
541-560.
-
T. Kröger, S. Noelle and S. Zimmermann,
On the connection between some Riemann-solver free approaches to the
approximation of multi-dimensional systems of hyperbolic
conservation laws.
Math. Model. Numer. Anal., Vol. 38 (2004), 989-1009.
-
N. Gray, Y.-C. Tai, and S. Noelle,
Shock waves, dead-zones and particle-free regions in rapid granular
free surface flows.
J. Fluid Mech. Vol. 491 (2003), 161-181.
-
K.-A. Lie and S. Noelle,
On the artificial compression method for second order
non-oscillatory central difference schemes for systems of conservation laws.
SIAM Journal on Scientific Computing, Vol. 24 (2003), Issue 4, 1157-1174.
-
K.-A. Lie and S. Noelle,
An improved quadrature rule for the flux-computation in high-resolution
non-oscillatory central difference schemes for systems of conservation laws
in multidimensions.
Journal on Scientific Computing, Vol. 18 (2003), Issue 1, 69-81.
-
Y.-C. Tai, S. Noelle, N. Gray and K. Hutter,
Shock capturing and front tracking methods for granular avalanches.
arXiv:1501.04756
Journal of Computational Physics, Vol. 175 (2002), 269-301.
-
A. Kurganov, S. Noelle and G. Petrova, Semi-Discrete
Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi
Equations. SIAM Journal on Scientific Computing, Vol. 23 (2001), 707-740.
-
S. Noelle,
The MoT-ICE: a new high-resolution wave-propagation algorithm for
multi-dimensional systems of conservation laws based on Fey's Method of Transport.
Journal of Computational Physics, Vol. 164 (2000), 283-334.
-
M. Westdickenberg and S. Noelle, A
new convergence proof for finite volume schemes using the kinetic formulation
of conservation laws. SIAM Journal on Numerical Analysis, Vol. 37
(2000), 742-757.
-
S. Noelle, Radially
symmetric solutions for a class of hyperbolic systems of conservation
laws. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol.
48 (1997) 676-679.
-
S. Noelle, A
note on entropy inequalities and error estimates for higher order accurate
finite volume schemes on irregular families of grids. Mathematics
of Computation, Vol. 65 (1996), 1155-1163.
-
S. Noelle,
Development of singularities for the complex Burgers equation.
Nonlinear Analysis: Theory, Methods, Applications, Vol. 26 (1996), 1313-1321.
-
S. Noelle, Convergence
of higher order finite volume schemes on irregular grids. Advances
in Computational Mathematics, Vol. 3 (1995), 197-218.
-
D. Kröner, S. Noelle and M. Rokyta,
Convergence of higher order upwind finite volume schemes on
unstructured grids for scalar conservation laws in several space
dimensions.
Numerische Mathematik, Vol. 71 (1995), 527-560.
-
S. Noelle,
Hyperbolic systems of conservation laws, the Weyl
equation, and multidimensional upwinding.
Journal of Computational
Physics, Vol. 115 (1994), 22-26.
↑
In Proceedings:
-
K. R. Arun, G. Chen, S. Noelle,
A Finite Volume Evolution Galerkin Scheme for Acoustic Waves in Heterogeneous Media.
in: F. Ancona, A. Bressan, P. Marcati, A. Marson (eds.) Hyperbolic Problems: Theory, Numerics, Applications.
Proceedings of the 14th International Conference on Hyperbolic Problems (Padua, 2012).
IGPM report 351 (2012), RWTH Aachen University.
AIMS Series on Applied Mathematics 8 (2014), 439 - 446.
-
J. Schütz, G. May and S. Noelle,
Analytical and numerical investigation of the influence of artificial viscosity in Discontinuous Galerkin methods on an adjoint-based error estimator.
Preprint AICES-2010/11-01, RWTH Aachen University.
Computational Fluid Dynamics 2010, A. Kuzmin (ed.), Springer, 2010, 203-209.
-
M. Castro, J.T. Frings, S. Noelle, C. Pares, G. Puppo,
On the hyperbolicity of two- and three-layer shallow water equations.
Submitted to Proceedings of the 13th International Conference on Hyperbolic Problems (Peking, June 15-19, 2010) (Sept. 30, 2010).
-
T. Kröger and S. Noelle,
Riemann-solver free schemes.
In: Analysis and numerics for conservation laws, 429-451,
Springer, Berlin, 2005.
-
S. Noelle, W. Rosenbaum, and M. Rumpf,
Multidimensional adaptive staggered grids.
In: Analysis and numerics for conservation laws, 479-493.
Springer, Berlin, 2005.
-
S. Noelle and M. Westdickenberg,
Convergence of Approximate Solutions of Conservation Laws.
In: Geometric analysis and nonlinear partial differential equations, 417-430.
Springer, Berlin, 2003.
-
K.-A. Lie and S. Noelle,
High resolution nonoscillatory central difference schemes for the
2D Euler equations via artificial compression.
In: Progress in Industrial Mathematics at ECMI 2000,
Eds., M. Anile, V. Capasso, and A. Greco,
Mathematics in Industry, Vol. 1, 318-324. Springer Verlag, 2002.
-
K.-A. Lie, S. Noelle and W.Rosenbaum,
On the resolution and stability of central difference schemes.
In: Finite Volumes for Complex Applications III Problems and Perspektives,
edited by Raphaele Herbin, Dietmar Kröner. Hermes Penton Science 2002, 793-800.
-
M. Fey, S. Noelle and C. von Törne,
MOTICE: a new multi-dimensional wave-propagation-algorithm based on Fey's Method of
Transport. With application to the Euler- and MHD-equations.
In: Hyperbolic problems: theory, numerics, applications, Vol. I (Magdeburg, 2000), 373-380.
Internat. Ser. Numer. Math. 140, Birkhäuser, Basel, 2001.
-
S. Noelle, W. Rosenbaum and M. Rumpf,
An adaptive staggered grid scheme for conservation laws.
In: Hyperbolic problems: theory, numerics, applications, Vol. II (Magdeburg, 2000), 775-784.
Internat. Ser. Numer. Math. 141, Birkhäuser, Basel, 2001.
-
Y.-C. Tai, S. Noelle, N. Gray and K. Hutter,
An accurate shock-capturing finite difference method to solve the
Savgae-Hutter equations in avalanche dynamics.
In: Proceedings of the International Symposium on Snow, Avalanches and
Impact of the Forest Cover, Innsbruck 2000. Annals of Glaciology 32 (2001), 263-267.
-
Y.-C. Tai, N. Gray, K. Hutter and S. Noelle,
Flow of dense avalanches past obstructions.
In: Proceedings of the International Symposium on Snow,
Avalanches and Impact of the Forest Cover, Innsbruck 2000.
Annals of Glaciology 32 (2001), 281-284.
-
S. Noelle,
Multidimensional flux-vector-splitting and high-resolution characteristic schemes.
In: Godunov methods (Oxford, 1999), 671-676. Kluwer/Plenum, New York, 2001.
-
S. Noelle,
The MoT-ICE: a new high-resolution wave-propagation algorithm based on Fey's
Method of Transport.
Invited plenary lecture. In: Proceedings of the Second International Symposium on Finite
Volumes for Complex Applications, Duisburg 1999, 95-115 (Hermes).
-
M. Westdickenberg and S. Noelle,
A new convergence proof for finite volume schemes.
In: Hyperbolic problems: theory, numerics, applications, Vol. II (Zürich, 1998), 983-992.
Internat. Ser. Numer. Math., 130, Birkhäuser, Basel, 1999.
-
S. Noelle,
A comparison of third and second order accurate finite volume schemes for the
two-dimensional compressible Euler equations.
In: Hyperbolic problems: theory, numerics, applications, Vol. II (Zürich, 1998), 757-766.
Internat. Ser. Numer. Math., 130, Birkhäuser, Basel, 1999.
↑
Further preprints, public lectures, work in preparation:
↑
Theses:
-
S. Noelle,
High order finite volume schemes for the two-dimensional compressible
Euler equations.
Habilitationsschrift, Universität Bonn (1997).
-
S. Noelle,
Cauchy problems for the complex Burgers equation in one and two space dimensions.
Dissertation, Courant Institute, New York University (1990).
↑